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Abstract

This paper develops a model that jointly accounts for the missing disinflation in the
wake of the Great Recession and the subsequently observed inflation-less recovery. The
key mechanism works through heterogeneous expectations that may durably lose their
anchoring to the central bank (CB)’s target and coordinate on particularly persistent
below-target paths. The welfare cost associated with persistent low inflation may be
reduced if the CB announces to the agents its target or its own inflation forecasts, as
communication helps coordinate expectations. However, the CB may lose its credibility
whenever its announcements become decoupled from actual inflation.
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1 Introduction

This paper develops a micro-founded general-equilibrium model in which the dynamics of

heterogeneous expectations provide a crucial and empirically-grounded ingredient to account

for the business-cycle dynamics.

During this period in the US and Europe, historically low interest rates have accompanied

persistently low but stable inflation and below-target inflation expectations, as depicted by

Figure 1. Substantial changes in price levels have failed to materialize both in the wake of

the downturn and thereafter, in what resembles an inflation-less recovery. This low-inflation

narrative is hard to unfold within the standard New Keynesian (NK) models because those

models generate implausible macroeconomic dynamics at the effective lower bound (ELB

hereafter).

Under rational expectations (RE), the dynamics are indeterminate at the ELB (Benhabib

et al. 2001), while under recursive learning – its most common alternative – deflationary

spirals arise as soon as the ELB binds for long enough (Evans et al. 2008, Ozden & Wouters

2021). Yet, real-world expectations have remained in this indeterminate and unstable region

of the inflation-output state space after the financial crisis, as depicted in Figure 2, without

giving rise to any excessively volatile or diverging inflation. Thus, the data appears to defy

the predictions of standard modelling frameworks.

Recent developments offer alternative models of stable dynamics at the ELB but remain

within the framework of the representative agent; see, in particular, Gabaix (2020) for a

parsimonious and micro-founded example. However, leaving out the heterogeneity of real-

world expectations may be problematic: not only does this conception of expectations conflict

with the extensive empirical evidence of unanchored and dispersed forecasts,1 but it also
1See, inter alia, Mankiw et al. (2003) in survey data from professional forecasters; and Branch (2004)
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Figure 1: Inflation expectations in the US and Euro Area 2008–2021

does not leave any room for the coordinating role of CB communication. Heterogeneity

in expectations is an essential challenge that CBs face when managing expectations. This

is especially true in periods of high uncertainty and macroeconomic volatility, such as the

aftermath of the COVID-19 pandemic, where disagreement between agents is likely to be

reinforced.

There exist models of heterogeneous expectations, as detailed in the literature review

below, but their avoidance of implausible dynamics at the ELB comes at the cost of ad-hoc

and empirically questionable constraints and/or deep sophistication.2 For instance, Ozden

from households. Coibion et al. (2019) show that more than half of the surveyed firms and households
do not know the value of the Fed inflation target. One-year-ahead household inflation expectations are on
average 1.5 percentage points (p.p.) above the target, and the cross-sectional dispersion reaches up to 3 p.p.
(Coibion et al. 2020). Moreover, Cornea-Madeira et al. (2019) estimate a model with evolutionary selection
among forecasting heuristics on survey and inflation data and find considerable heterogeneity in forecasting
models that is also time-varying. For laboratory evidence in this respect, see, e.g., the survey by Hommes
(2021).

2In learning models in general, imposing an ad-hoc floor on deflation also rules out these explosive paths
(Evans et al. 2022).
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Figure 2: (Ir)relevance of the New Keynesian model with rational expectations since the
‘new normal’

(2021) shows that a sufficiently high proportion of the agents need to keep their expectations

anchored at the target even during an ELB episode so as to limit the diverging trend and

induce convergence back to the steady state. In Andrade et al. (2019), heterogeneity only

exists at the ELB and pertains to the length of the ELB episode, while inflation and output

forecasts remain homogeneous.

We therefore contribute to the literature by developing a model that combines the ap-

pealing properties from, e.g. Gabaix (2020) – in particular parsimony and micro-foundations

and the emergence of stable dynamics at the ELB – with time-varying heterogeneity in ex-

pectations. The model can be matched against moments from real-world expectations and

restores the coordinating role of CB communication. In our framework, the heterogeneous

expectations are the engine that endogenously drives the economy into stable and extended

periods at the ELB and allows our model to account for the recent economic experiences.

We develop the micro-foundations of a NK model with heterogeneous expectations that
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evolve using a parsimonious evolutionary learning process and nest the RE homogeneous-

agent benchmark. Learning dynamics create room for expectations to be persistently off

target and play an autonomous role in driving business cycles, so that recessive episodes

- and ELB episodes - need not be generated by exogenous and persistent technology or

financial shocks.3 In our model, agents employ steady-state learning; i.e. they form beliefs

about the long-run values of inflation and output, which easily translates into the issue of

expectation anchoring.

Specifically, we have chosen to model these dynamics through the use of a social learning

(SL) process. Our choice is motivated by the parsimony of this class of learning models,

their ability to match experimental findings and the evolutionary role of heterogeneity in

the adaptation of the agents. In these models, agents collectively adapt to an ever-changing

environment in which their own expectations contribute to shape the macroeconomic vari-

ables that they are trying to forecast. This feature is well suited to self-referential economic

systems such as standard macroeconomic models. SL expectations also find an intuitive in-

terpretation that is reminiscent of the idea of epidemiological expectations, in which ‘expert

forecasts’ only gradually diffuse across the entire population (Carroll 2003).

In a novel effort within the related literature,4 we take our stylized model to the data and

show that it is able to jointly replicate ten salient business cycle moments from the Survey of

Professional Forecasters (SPF) and the main US macroeconomic time series. This moments

include the frequency of ELB episodes, major dimensions of heterogeneity in expectations
3Angeletos et al. (2018) investigate the role of strategic uncertainty in the presence of heterogeneous

information within a general-equilibrium model. However, those authors use a real business cycle (RBC)
model, which implies that monetary policy is left out.

4Del Negro & Eusepi (2011) attempt to replicate expectation data with RE models. Milani (2007) fits
an adaptive learning NK model to macroeconomic time series only. Closer to our contribution, Slobodyan &
Wouters (2012a,b) estimate an NK model on both macroeconomic and expectation times series. However,
the authors use exogenous autocorrelated shocks on expectations to reproduce the observed persistence in
the data.
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and a substantial share of the persistence in output and inflation data. This empirical

exercise is already a remarkable result given the parsimony of the model. Our empirical

application makes two contributions to the literature: (i) a moment-matching routine for

a non-linear model under heterogeneous expectations and (ii) data-consistent values to the

learning parameters for which there are no observable counterparts.

A second major contribution is to show that our model endogenously produces stable

dynamics at the ELB. Those stable dynamics correspond to recent inflation-less recoveries.

We can loosely define such a recovery as one in which inflation persists for an extended

period of time below its target, i.e. the ELB binds, but output expands. The model matches

particularly well the probability of the ELB on nominal interest rates to bind despite the

relatively modest amplitude and i.i.d. structure of the fundamental shocks. Those ELB

episodes are not the result of large exogenous shocks but are an endogenous product of the

interplay between learning and the small i.i.d. shocks.

In our model, once agents have coordinated on pessimistic expectations, the transition

back to the target can be particularly long; expectations have become unanchored and, per

their self-fulfilling nature, sustain the bust. Hence, we offer a reading of the recent economic

experience as resulting from a long-lasting coordination of agents on pessimistic expectations

rather than persistent and exogenous shocks.

Given that our model nests the RE homogeneous-agent benchmark, we interpret the

dispersion of expectations as a friction and quantify the ensuing welfare loss with respect

to the RE outcome. We find that heterogeneous expectations entail a consumption loss of

almost 0.87% with respect to the RE allocation. From there, a natural follow-up analysis

is to introduce an additional monetary policy instrument, namely CB communication, and

investigate whether it may offset the costs of forecast dispersion. To address this question,
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we exploit the flexibility of the SL model, which enables us to integrate CB communication

into the learning process of the agents. From two simple communication examples, we show

the the critical role CB credibility plays in the ability of its announcements to reshape expec-

tations. The CB may lose credibility whenever the announcements become decoupled from

the actual realizations of inflation. Moreover, accurate but below-target inflation forecasts

may turn self-defeating by coordinating expectations on a pessimistic depression. In light

of these observations, We then discuss the impact of these observations on recent policy

debates, such as the forward-guidance puzzle or the adoption of (temporary) higher inflation

targets.

Related literature Our paper primarily relates to the growing literature on DSGE models

with heterogeneous expectations. The earlier contributions in this area ignore the issue of

the ELB, focus instead on the equilibrium learnability and dynamic of the three-equation

reduced-form NK model. For instance, De Grauwe (2011) models upward- and downward-

biased beliefs in a three-equation NK model. In this paper, evolutionary selection based on

a heuristic-switching model (HSM, hereafter)- as developed in the seminal contribution of

Brock & Hommes (1997) – creates endogenous waves of pessimism and optimism that mimic

business cycles. Once heterogeneous beliefs are accounted for, flexible inflation targeting

helps stabilize inflation, a result confirmed in a laboratory experiment by Hommes et al.

(2019).

Branch & McGough (2009) introduce a two-type expectation model in the NK reduced-

form framework, where a fraction of the agents are rational and the remainder are adaptive.

They find that heterogeneous expectations may lead to multiple equilibria. Gasteiger (2014)

and Di Bartolomeo et al. (2016) characterize optimal policy in such a framework. Branch &
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McGough (2010) extend this framework by allowing heterogeneity to be time-varying using

an HSM. Anufriev et al. (2013) show that, when many types of biased expectations co-exist in

a frictionless DSGE model, the Taylor principle is no longer sufficient to achieve the target.5

Massaro (2013) focuses on the micro-foundations of the NK model with an HSM. Closer to

the present paper, Arifovic et al. (2013) discuss the robustness of the Taylor principle to SL

expectations, but ignore ELB dynamics and micro-foundations.

Investigating the interaction between the ELB and HSM, Busetti et al. (2017) develop

a model in which agents switch between a misspecified forecasting rule that may unanchor

their long-run expectations and a mean-reverting adaptive rule. Ozden (2021) extends their

framework to consider regime-switching between an ELB and a normal environment with

unconstrained monetary policy. This author shows that the ELB episodes need to be short

in order to avoid divergence along a deflationary path that is prevalent under adaptive

learning. This divergence problem, which our framework overcomes, is extensively discussed

under learning and homogeneous agents by Ozden & Wouters (2021).

Our paper also adds to the literature on communication under learning. Earlier contribu-

tions emphasize that deviations from RE provide a strong rationale for CB communication

(Orphanides & Williams 2007). The learning literature generally concludes that communi-

cation is stabilizing under learning in models where communication use a model-consistent

forecasting model.6 One important assumption in these models is that communication is

fully credible.

By contrast, in our model, the CB’s credibility evolves endogenously as a result of the

realized inflation gap. The existing contributions that come the closest to our treatment of
5This result echoes the well-known earlier finding of Orphanides & Williams (2004) under adaptive learn-

ing, and stands in contrast with the conclusion of Gabaix (2020), in which boundedly rational agents, albeit
homogeneous, imply a wider determinacy region than under RE.

6see, inter alia, Orphanides & Williams (2005, 2007), Eusepi & Preston (2010).
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endogenous credibility come from Hachem & Wu (2017), Hommes & Lustenhouwer (2019a)

and Goy et al. (2020). Hommes & Lustenhouwer (2019a) consider the stability properties

of a model with an EBL and heterogeneous expectations. In this model, agents may anchor

their expectations at the target or switch to follow past inflation, should the target be missed

and the CB lose credibility. In a similar vein, Goy et al. (2020) consider a model in which the

agents switch between either integrating the CB forward-guidance announcements in their

expectations or forming adaptive expectations. Hachem & Wu (2017) abstract from the NK

setup but integrate social dynamics in the evolution of the CB’s credibility. They make a

case for credible gradual communication in order to disinflate the economy, and aggressive

communication in order to reflate an economy trapped at the ELB.

Andrade et al. (2019) stand out thanks to their they focus on a different kind of hetero-

geneity. In their model, agents hold heterogeneous beliefs as to the length of the liquidity

trap, which leads to both a pessimistic and an optimistic interpretation of the CB forward

guidance as well as two distinct co-existing expectations regarding the length of the ELB

episode. Nevertheless, heterogeneity in their setting is not dynamic and only prevails at the

ELB.

Finally, there exist larger-scale and considerably more complex DSGE models than our

present framework, in which non-linearities play a key role in accounting for the recent

economic experience; see, inter alia, Gust et al. (2017), Lindé & Trabandt (2019). Our work

is particularly related to the NK models with multiple equilibria where the persistent slump

after the Great Recession is understood as an exogenously driven regime-switch from the

targeted equilibrium to the deflationary steady state (Schmitt-Grohé & Uribe 2017, Aruoba

et al. 2017, Arifovic et al. 2018, Lansing 2020). However, the coordination mechanism

generating liquidity traps in our model is fundamentally different from the one used in the
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above-cited contributions.

In the context of our model, agents never coordinate on the low-inflation steady state,

nor do they contemplate the possibility of a regime switching between the two steady states.

The target is the only stable equilibrium under SL and expectations always remain within its

basin of attraction, which is shown to be larger under SL than the determinacy region under

RE. As a result of a series of adverse fundamental shocks, expectations may travel to regions

of that basin from which convergence back to target takes a very long time; in these regions,

the ELB binds and the pessimistic expectations are self-defeating per the self-fulfilling nature

of the expectations.

To model expectations, we use a SL mechanism similar to Arifovic et al. (2013, 2018).

Yet, our work differs substantially. Importantly, those two theoretical contributions study

the asymptotic stability of the NK model under SL. Our focus is on the short-term fluctua-

tions arising from the interplay between fundamental shocks and learning dynamics and the

empirical performances of the SL. Arifovic et al. (2018) interpret liquidity trap episodes as

the coordination of expectations on the low-inflation steady-state that is stable under their

learning mechanism. Our agents have a finite memory and our empirical calibration differs

from theirs, which does not allow us to generalize their result to our setup. In fact, in our

model, the low-inflation state is unstable under SL as it belongs to the basin of attraction

of the target; if expectations shift into the low-inflation state, they will eventually converge

back to the target, but after a considerable amount of time.

The rest of the paper proceeds as follows. In Section 2, we develop the model; the

moment-matching and calibration exercise is presented in Section 3; the dynamic properties

of the model are analyzed in Section 4; Section 5 discusses CB communication; and Section

6 concludes.
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2 The model

We first describe the building blocks of the model, then present the solution under the RE

benchmark and finally focus on how expectations evolve under SL. The micro-foundations

of the model under heterogeneous SL expectations are developed in Appendix A.1.

2.1 A piecewise linear New Keynesian model

Our model builds on the workhorse three-equation NK model into which we introduce het-

erogeneous expectations. The time and the number of agent types are discrete. There are

N agent-types, indexed by j = 1, . . . , N , that only differ in terms of expectations but oth-

erwise share the same characteristics (in particular in terms of preferences and technology).

The main assumptions are welfare maximizing households with endogenous labor supply and

nonseparable preferences, while firms are monopolistic competitors and face menu costs à

la Rotemberg. In this setup, expectations result from idiosyncratic shocks (mutations) and

social interactions (tournament); see Section 2.3. Appendix A.1 provides the explicit micro-

foundations of the SL model and shows how aggregate heterogeneous expectations may be

obtained from the arithmetic mean of the individual expectations among all N agent types,

indexed by j = 1, ..., N .

In what follows, we provide the underlying linearized equations of the micro-founded

model. As in its textbook version, the NK model is summarized by three core equations.

All variables below are expressed in terms of deviation from their steady-state levels, which

in turn correspond to the CB target.

The first equation, the IS curve, describes aggregate demand:

ŷt = E∗t {ŷt+1} − σ−1(ı̂t − E∗t {π̂t+1}) + ĝt, (1)

10



where ŷt is the output gap, ı̂t the nominal interest rate set by the CB, π̂t the deviation of

the inflation rate from the target (hence, ı̂t−E∗t π̂t+1 is the real expected interest rate), ĝ an

exogenous real disturbance, σ > 0 the inter-temporal elasticity of substitution of consump-

tion (based on a CRRA utility function), and E∗t the (possibly boundedly rational) aggregate

expectation operator based on information available at time t.

The second equation is the forward-looking NK Phillips curve that summarizes the supply

side:

π̂t = βE∗t {π̂t+1}+ κŷt + ût, (2)

where 0 < β < 1 represents the discount factor, κ > 0 a composite parameter capturing the

sensitivity of inflation to the output gap and ût an exogenous cost-push shock.

The third equation describes the law of motion of the nominal rate. Monetary policy

implements a flexible inflation-targeting regime subject to the ELB constraint, which results

in the following non-linear Taylor rule:

ı̂t = max{−r;φπE∗t {π̂t+1}+ φyE∗t {ŷt+1}}, (3)

where φπ and φy are the reaction coefficients to the respective gaps in inflation and output,

and r ≡ πT + ρ the steady-state in level of interest rate associated with the inflation target

πT and the households’ discount rate ρ ≡ − log(β). The forward-looking rule highlights

the emphasis of CBs on expectations as contemporaneous variables are not instantaneously

observable.

We now present the solution of the model under the RE benchmark and then detail how

the agents’ expectations evolve under the SL process.

11



2.2 The model under rational expectations

In this section, we consider RE and impose E∗t (·) = E(· | It) as the RE operator given the

information set It common to all agents in period t. We solve for the minimal state variable

(MSV) solution using the method of undetermined coefficients. All details are provided in

Appendix A.2.

It is well known that the ELB introduces a non-linearity in the Taylor rule and generates

an additional deflationary steady-state (Benhabib et al. 2001). Hence, expressing the model

in reduced form is complicated by this non-linearity, and we need to disentangle two pieces,

one around the target and one where the ELB is binding.7

A short digression through the one-dimensional Fisherian model easily illustrates this

configuration. Figure 3 displays inflation and interest rate dynamics, abstracting from the

production side: the inflation target corresponds to π̂ = 0 and the deflationary steady state

to π̂elb. Provided that π̂elb ≤ 0 ≤ πT , the two equilibria co-exist.

Coming back to the two-dimensional model, we have to specify a process for the exogenous

shocks. In the rest of the paper, we consider white noise shocks only, so ĝ and û are non-

observable i.i.d. processes. In this case, the MSV solution boils down to a noisy constant

without persistence. The presence of a floor on the nominal rate makes this solution piece-
7We follow here the related NK literature and impose the ELB constraint in the log-linearized model

around the targeted steady state to describe the dynamics around the low inflation state, see, inter alia,
Guerrieri & Iacoviello (2015). This method gives a second-best measure of the dynamics around the defla-
tionary steady state. A first-best would be to log-linearize the model around this second steady state, but
this would result in an MSV solution involving extra additional state variables (Ascari & Sbordone 2014)
and, hence, additional coefficients to learn under SL (see Section 2.3). However, the benefits in terms of
qualitative results are unlikely to outweigh the costs of such a complication of the learning process of the
agents.
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deviation occurs: ı̂ = β−1π̂ = 0. At the ELB (in red), we can derive an equilibrium such that −r = β−1π̂elb ⇔ π̂elb = −rβ.
Provided that π̂elb ≤ πT , the two equilibria co-exist. The shaded area is indeterminate under RE and unstable under adaptive
learning (Evans et al. 2008).

Figure 3: Co-existence of two steady states under the ELB constraint

wise linear:

ẑt = [ŷt π̂t]′ =


aT + χgĝt + χuût, if it > 0

aelb + χgĝt + χuût, if it = 0,
(4)

where the first case is the law of motion when the ELB is not binding (denoted by a ‘T’

superscript) and the second case when the ELB is binding (denoted by an ‘elb’ superscript).

The exact expression of the matrix coefficients can be found in Appendix A.2. Note that

as variables are expressed in terms of deviation from their steady-state values at the target,

we have aT = (0 0)′. Additionally, under RE, the combination of white-noise shocks and a

forward-looking rule implies that expectations remain anchored at the target and the ELB

never binds. We now introduce expectations under SL.
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2.3 Expectations under social learning

Under SL, we relax the assumption of homogeneous agents endowed with RE and consider

instead a population of N heterogeneous and interacting agents, indexed by j = 1, · · · , N .

We now define E∗t (·) = ESLj,t (· | Ij,t) to be the expectation operator under SL given the

information set Ij,t available in period t to agent j. The information set is agent-specific

as it contains, in addition to the history of past inflation and output gaps up until period

t− 1, the individual’s current and past forecasts, which need not be shared with the whole

population.

Individual forecasting rules Following Arifovic et al. (2013, 2018), we assume that all

agents are endowed with forecasting rules that are consistent with the MSV solution but

involve agent-specific coefficients that they revise over time. As detailed in Appendix A.1.1,

in any period t, each agent j is therefore entirely described by a two-component forecast

[ayj,t, aπj,t]′ and her expectations read as:

ESLj,t {ẑj,t+1} =

 ESLj,t {ŷt+1}

ESLj,t {π̂t+1}

 =

 ayj,t

aπj,t

 . (5)

These forecast values have an appealing interpretation. In the absence of shocks, they cor-

respond to long-run output and inflation gap forecasts. In the presence of i.i.d. shocks, they

correspond to average output gap and inflation-gap forecasts. Under either of those interpre-

tations, the forecasts [ayj,t aπj,t]′ represent agents’ beliefs about the steady-state values of the

inflation and output gaps, which allows us to intuitively measure expectation (un)anchoring
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using the distance of each variable to its respective target (i.e. zero).8 Heterogeneous coef-

ficients in [ayj,t aπj,t]′ capture the disagreement among forecasters observed in survey data. In

particular, dispersed coefficients {aπj,t} can be interpreted as disagreement about the CB’s

target.

Under learning, the model is solved sequentially so as to obtain a temporary equilibrium

in each period, which makes it straightforward to account for the non-linearity induced by

the ELB. Figure 4 summarizes the sequence of events within a period under SL. Let us now

detail each step. The SL model utilizes two operators.

Mutation. The first operator is an innovation process, or mutation, that allows for a

constant exploration of the state space outside the existing population of forecasts. Agents

may experience idiosyncratic shocks, which we interpret as them receiving a new piece of

information. In each period, each agent may receive news about inflation and output gaps

at exogenous rates of respectively µπ and µπ. To be more precise, each agent’s forecast mx
j,t

of any variable x = {y, π} is updated at the beginning of each period as follows:

mx
j,t = axj,t−1 + 1zxj,t≤µx ι

x
j,t (6)

with zxj,t ∼ U(0, 1) a random draw from a uniform distribution with support [0, 1] and

ιxj,t ∼ N (0, ξ2
x) an idiosyncratic Gaussian random draw representing the news. Note that,

the larger the parameters ξx, the wider the neighborhood to be explored around the existing

forecasts, or the more disagreement there is between agents’ idiosyncratic information shocks.

After the mutation process has determined a population of potential forecasts, each
8In the rest of the paper, we denote by Ω such an indicator of expectation anchoring. Specifically,

we use the average squared distance of individual expectations to zero: ΩEπ
t = 1

N

∑N
j=1 ESLj,t {π̂t+1}2 and

ΩEy
t = 1

N

∑N
j=1 ESLj,t {ŷt+1}2. The lower those values, the stronger the anchoring of expectations.
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Figure 4: Intra-period timing of events in the model under SL

updated forecast {mx
j,t} enters the tournament phase, which determines the forecasts that

survive evolutionary selection and actually get used by agents.

Tournament and computation of forecasting performances. This second opera-

tor, the tournament, is the selection mechanism of the learning process; and allows better-

performing forecasts to spread among the population at the expense of worse-performing

ones. Forecast performance is evaluated using forecast errors over the whole past history of

the economy.

A ’fitness’ value axj,t, x = {y, π} is assigned to each forecast a of each agent j. This is

computed as follow

F x
j,t = −

t∑
τ=0

ρτx(x̂t−1−τ −mx
j,t)2. (7)

The terms ŷt−1−τ−my
j,t and π̂t−1−τ−mπ

j,t correspond, respectively, to the output and inflation

gap forecast errors that agent j would have made in period t−τ−1, had she used her current

forecasts my
j,t and mπ

j,t to predict the output and inflation gaps in period t− τ . The smaller

the forecast errors, the higher the fitness.
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Parameter ρx ∈ [0, 1] (for x = y, π) represents the collective memory or experience of

the population. In the nested case where ρx = 0, the fitness of each forecast is completely

determined by the forecast error on the most recent observable data. For any 0 < ρx ≤ 1,

all past forecast errors impact the fitness but with exponentially declining weights while, for

ρx = 1, all past errors have an equal weight in the computation of the fitness. This memory

parameter allows the agents to discriminate between a one-time lucky draw and persistently

good forecasting performances.

In the tournament, agents are randomly paired (the number of agents is conveniently

chosen even), their fitness with respect to inflation and output gap forecasts are each com-

pared and the agent with the lowest fitness copies the forecast of their counterpart. There are

two separate tournaments: one for inflation gap forecasts {aπj,t}j∈J and one for output gap

forecasts {ayj,t}j∈J .9 Formally, for each pair of agents (k, l) ∈ J , k 6= l, with a corresponding

pair of forecasts (mx
k,t,m

x
l,t) for each forecast variable x ∈ {π, y}, the tournament leads to an

imitation of the more successful forecasts of the pair as follows:

(axk,t, axl,t) = 1Fx
k,t
>Fx

l,t
(mx

k,t,m
x
k,t) + 1Fx

k,t
≤Fx

l,t
(mx

l,t,m
x
l,t), for x ∈ {π, y}. (8)

The tournament occurs after the mutation operator in order to screen out poorly per-

forming forecast candidates stemming from mutations. This allows the model to be less

sensitive to the parameter values tuning the mutation. Indeed, if mutation were to take

place after the tournament selection, all newly created forecasts would determine aggregate

expectations without consideration of their performances. This way, the mutation process

can be more frequent and of wider amplitude so as to allow agents to adapt more quickly
9This assumption will turn out useful in the empirical exercise below while not being restrictive: Arifovic

et al. (2013) show that most SL dynamics are robust to a single tournament but harder to calibrate due to
the systematic differential of error sizes between variables.
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to new macroeconomic conditions, while limiting the amount of noise introduced by the SL

algorithm.

Aggregation of individual forecasts. Following Arifovic et al. (2013, 2018), individual

expectations (5) are aggregated using the arithmetic mean as:

ESLt ẑt+1 = 1
N

N∑
j=1

ESLj,t ẑt+1. (9)

Appendix A.1 shows that this aggregation rule is consistent with the micro-foundations of

the macroeconomic model. Note that under this aggregation procedure, agents have the

same relative weight in expectations formation, thus one agent cannot influence market

expectations when the number of agents N is large enough.

Computation of the endogenous variables. Given the aggregate expectations ESLt ẑt+1

and the realization of the shocks, the piece-wise linear Taylor rule (3) sets the nominal

interest rate: if the shadow rate is negative, the nominal interest rate is set to zero. Given

the nominal rate, the expectations and the shock g, the IS curve (1) then determines the

output gap and finally, the Phillips curve (2) determines the inflation gap given inflation

expectations, the output gap and the shock u.

Simulation protocol. We study the dynamics of the model using numerical simulations.

Throughout the rest of the paper, we proceed as described in Arifovic et al. (2013, 2018). We

generate a history of 100 periods along the law of motion of the economy around the target

(see Eq. (4)) and introduce a population of SL agents in t = 100. Their initial forecasts are

drawn from the same support as the one used in the mutation process, i.e. from a normal
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distribution with standard deviation ξx, x = π, y. The first 100 periods are used to provide

the agents with a history of past inflation and output gaps in order to compute the fitness of

their newly introduced forecasts. In the simulation exercises in the next section, we vary the

initial average of the normal distribution to tune the degree of pessimism in the economy.

The further below zero the initial average forecasts are, the more pessimistic views the agents

hold about future inflation and output gaps.

Summary of the model under SL. Combining all the equations from the model under

SL, the equilibrium conditions are given by:

my
j,t = ayj,t−1 + 1zyjt≤µy ι

y
j,tξy (10)

mπ
j,t = aπj,t−1 + 1zπjt≤µπ ι

π
j,tξπ (11)

F y
j,t = −

t∑
τ=0

ρτy(ŷt−1−τ −my
j,t)2 (12)

F π
j,t = −

t∑
τ=0

ρτπ(π̂t−1−τ −mπ
j,t)2 (13)

(ayk,t, a
y
l,t) = 1F y

k,t
>F y

k,t
(my

k,t,m
y
k,t) + 1F y

k,t
≤F y

l,t
(my

l,t,m
y
l,t) for k 6= l ∈ J (14)

(aπk,t, aπl,t) = 1Fπ
k,t
>Fπ

k,t
(mπ

k,t,m
π
k,t) + 1Fπ

k,t
≤Fπ

l,t
(mπ

l,t,m
π
l,t) for k 6= l ∈ J (15)

Et {π̂t+1} = 1
N

N∑
j=1

aπj,t (16)

Et {ŷt+1} = 1
N

N∑
j=1

ayj,t (17)

ŷt = Et {ŷt+1} −
1
σ

(̂ıt − Et {π̂t+1}) + ĝt (18)

π̂t = κŷt + βEtπ̂t+1 + ût (19)

ı̂t = max (φπEt {π̂t+1}+ φyEt {ŷt+1} ,−r̄) (20)
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Note that the SL model includes 6N + 2 more equations than the RE model needs.

Finally, it is important to recognize that the RE representative-agent benchmark is nested

in our heterogeneous-agent model: as soon as the inflation and output gap expectations of all

agents are initialized at the targeted values and mutation is switched off (i.e. ξy, ξπ = 0), the

dynamics boil down to the RE benchmark. Under SL, our model involves a few parameters,

namely the probabilities of mutation, the sizes of those mutations and the memory of the

fitness function. We now detail how we match those parameter values.

3 Moment Matching

We will now jointly match the learning parameters and the structural parameters of the

model. We first describe the construction of the dataset, then discuss our methodology and,

finally, present the results.

3.1 Dataset

US macroeconomic time series for output, price index and nominal rates are taken from the

FRED database. Forecast data come from the SPF of the Federal Reserve of Philadelphia.

This choice is common in the related studies, as it is argued that these data provide a

good approximation of the private sector expectations that are involved in the NK model

(Del Negro & Eusepi 2011). SPF data span the period from 1968 to 2018 on a quarterly

basis. To make the dataset stationary, we divide output by both the working age population

and the price index. In order to obtain a measurement of the output gap, we compute the

percentage deviations of the resulting output time series from its linear trend. The inflation

rate is measured by the growth rate of the GDP deflator.
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As heterogeneity in expectations is a key feature of real-world expectations as well as an

essential ingredient of the dynamics under SL, we construct an empirical measure of that

heterogeneity in the survey data. We use the cross-sectional dispersion of the individual fore-

casts, measured by the standard deviation of the individual forecasts among all participants

in each period, to obtain a time series of forecasts’ heterogeneity.

3.2 Methodology

With these data at hand, we proceed by matching the statistics from empirical moments

with their simulated counterparts under SL. We discuss the technical details in Appendix

B. In short, we use the simulated moments method (SMM), which provides a rigorous ba-

sis for evaluating whether the model is able to replicate salient business-cycle properties.

The SL algorithm entails a substantial additional computational burden compared to a RE

model. In particular, the SL algorithm brings an additional non-linearity into the piecewise-

linear model and an additional source of stochasticity next to the fundamental shocks.10

To circumvent these difficulties and reduce the computing time, we choose to include prior

informations in the same spirit as Ruge-Murcia (2012). This moment-matching strategy,

referred to as a quasi-Bayesian method, consists of a mixed estimation approach involving

prior information, that aims to avoid the exploration of some parameter spaces that are eco-

nomically irrelevant. With this method, priors are treated as additional moments to match

in the objective function.

Hence, we first reduce the number of dimensions of the matching problem and calibrate
10Due to the non-linearity introduced by the ELB, we may not apply the Kalman filter and would need

to use a non-linear filter to estimate the model with Bayesian full-information techniques. Given that this
paper is the first attempt to bring such a heterogeneous-expectations model to the data, we encountered
additional difficulties in estimating the SL model with an SMM (see Appendix B). Hence, we have left
Bayesian estimation as a possibility for future research.
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some of the parameters, namely the monetary policy and the preference parameters, as is

standard in the related macroeconomic literature, and the number of agents (see Table 1).

We are left with four structural parameters from the NK model, namely the standard

error of the fundamental shocks σg and σu, the slope of the NK Phillips curve (parameter κ)

and the natural rate r. As we have calibrated the value of the discount factor β (see Table

1), we optimize the value of the inflation trend over the period considered, which uniquely

determines the value of r̄.11 As for the SL parameters, we need not estimate common

values for the inflation and the output-gap expectation processes; as the two tournaments

are separated and the two time series are likely to behave differently and exhibit different

properties, both in reality and in the model. For instance, measuring inflation- and output

gap-specific memory parameters ρπ and ρy may reveal the fact that agents can learn that one

variable may display more persistence than the other. Hence, in order to match moments,

we use six learning parameters. Considering x = {π, y}, we optimize the mutation sizes and

frequencies ξx and µx as well as the memory -i.e. discounting rate - of the fitness measures

ρx.

We now discuss the mapping between these parameters and the empirical moments to

match. First, the standard deviations of the shocks σg and σu naturally capture the em-

pirical volatility of output and inflation. Second, the inflation trend π̄ aims to match the

ELB frequency. To see why, recall that a higher natural rate r̄ mechanically decreases the

probability of hitting the ELB, as the latter is defined as ı̂t = −r̄, which is strictly decreasing

in the value of the inflation target. Finally, the slope of the Phillips curve κ determines the

correlation between the output and inflation gaps per Eq. (2).

As for the SL parameters, the memory parameters of the fitness function ρy and ρπ tune
11r̄ is associated with the inflation target per Eq. (3) but no such target existed in the US for most of the

time period considered. Therefore, we use an inflation trend over that period to match the moments.
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Value Source
σ intertemporal elasticity of substitution 1 Gaĺı (2015)
ϕ Frish labor elasticity 1 Gaĺı (2015)
φπ policy stance on inflation gap 1.50 Gaĺı (2015)
φy policy stance on output gap 0.125 Gaĺı (2015)
β discount factor 0.995 Jarociński & Maćkowiak (2018)
N number of agents 300 Arifovic et al. (2018)

Table 1: Calibrated parameters (quarterly basis)

the sluggishness of the expectations because they determine the weights on recent versus

past forecast errors in the computation of the forecasting performances. The higher ρy and

ρπ, the longer the memory of the agents, the less reactive the learning process to recent

errors and the more sluggish the expectations. As sluggishness in expectations is the only

source of persistence in the model once we consider i.i.d. shocks, parameters ρy and ρπ are

matched with the autocorrelation of the output and inflation gaps, respectively.

The remaining four learning parameters control the mutation processes that are the

source of the pervasive heterogeneity in expectations in the SL model. We understandably

use these parameters to match four moments characterizing heterogeneity in the SPF data:

the average dispersion of the output and the inflation gap forecasts over the time period

considered - denoted by ∆Ey and ∆Eπ respectively - and their first-order autocorrelations,

denoted by ρ(∆Ey
t ,∆Ey

t−1) and ρ(∆Eπ
t ,∆Eπ

t−1). In line with intuition, sensitivity analyses of

the objective function of the matching problem with respect to these learning parameters

have reported the following associations: the mutation sizes ξy and ξπ capture a substantial

share of the empirical dispersion of output and inflation gap forecasts, while the mutation

frequencies µy and µπ match most of their autocorrelation.

Finally, we impose prior restrictions on the optimized parameters and treat them as
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additional moments in the objective function. These restrictions allow us to incorporate

additional theoretical or empirical information on parameters values in the form of priors

that are combined with the data into a penalized statistical objective. The details are left

for Appendix B. The priors for the structural NK parameters are taken from the literature

on Bayesian estimation of DSGE models (Smets & Wouters 2007) and we choose priors for

the learning parameters that are in line with the values used in the SL literature, such as

Arifovic et al. (2013) (see Table 3).

3.3 Results from moment matching

Table 2 reports the matched moments and their empirical counterparts (in p.p.). Table 3

gives the corresponding optimized values of the parameters.

It is first striking to see that the simple two-dimensional model accounts for a substantial

share of all ten moments. For half of them, the simulated moments even fall within the

confidence interval of their empirical counterparts, which means that our model replicates

those moments fully. We succeed in capturing not all - but a non-negligible part - of the

persistence in macroeconomic variables with a model that employs only white-noise shocks.12

We shed further light on the source of that persistence in Section 4.1. Nonetheless, at

that stage, we can state that learning acts as an endogenous propagation mechanism that

amplifies the effects of i.i.d. shocks. The learning account for 22% of the empirical output

gap persistence and even 63% of the inflation persistence found in the data.

Furthermore, all simulated correlations are of the same sign as their observed counter-

parts. Remarkably, our model succeeds in producing positive autocorrelation in forecast
12 Matching all the persistence would not be a realistic or desirable objective: it is unlikely that all

macroeconomic persistence stems from learning in expectations, and our model ignores all other fundamental
sources of persistence in the economy. We rather provide a measure of the share of the persistence that could
be attributed to learning.
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Moment name Simulated Empirical [0.005;0.995]
σ(ŷt) output gap sd. 4.39 4.38 [3.97;4.83]
ρ(ŷt, ŷt−1) output gap autocorr. 0.22 0.98 [0.98;0.99]
σ(π̂t) inflation gap sd. 0.66 0.60 [0.54;0.66]
ρ(π̂t, π̂t−1) inflation gap autocorr. 0.56 0.90 [0.87;0.92]
ρ(π̂t, ŷt) inflation-output correlation 0.097 0.08 [-0.07;0.21]
∆Ey av. forecast dispersion of output gap 0.4 0.36 [0.31;0.41]
∆Eπ av. forecast dispersion of inflation gap 0.20 0.25 [0.22;0.28]
ρ(∆Ey

t ,∆Ey
t−1) autocorr. of forecast disp. of output gap 0.63 0.76 [0.70;0.82]

ρ(∆Eπ
t ,∆Eπ

t−1) autocorr. of forecast disp. of inflation gap 0.4 0.64 [0.55;0.72]
P [̂ıt > −r̄] probability not at the ELB 0.83 0.86 [0.81;0.91]

Objective function value 0.85 -

Table 2: Comparison of the (matched) theoretical moments with their observable counter-
parts

Prior Distributions Posterior Results
Shape Mean STD Mean STD

σg - real shock std Invgamma .1 5 3.8551 0.0774
σu - cost-push shock std Invgamma .1 5 0.4232 0.0064

100πT - quarterly inflation trend Beta .62 .1 0.829 0.0300
κ - Phillips curve slope Beta .05 .1 0.0095 0.0012
µy - mutation rate for Ey Beta .25 .1 0.2467 0.0035
µπ - mutation rate for Eπ Beta .25 .1 0.2748 0.0036
ξy - mutation std. for Ey Invgamma .1 2 0.8547 0.1300
ξπ - mutation std. for Eπ Invgamma .1 2 0.7406 0.1000
ρy - fitness decay rate for Ey Beta .5 .2 0.8301 0.0203
ρπ - fitness decay rate for Eπ Beta .5 .2 0.5465 0.0081

Notes: The values of the standard deviation of the optimized parameters are computed using a numerical approximation of a
sparse matrix representation of the Hessian matrix.

Table 3: Optimized parameters using the simulated method of moments matching the SPF
data (1968–2018)

dispersion. This result is an important step forward in the modeling and estimation litera-

ture, as we show that our simple framework can address the heterogeneity in expectations

that has been observed empirically but is incompatible with RE.
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The model also does a good job at matching the probability that the ELB will bind on

nominal interest rates despite the relatively small i.i.d. fundamental shocks. These ELB

episodes do not stem from large exogenous shocks but are an endogenous product of the

interplay between learning and those small i.i.d. shocks, as detailed in the next section.

All our optimized values are consistent with empirical values and usual estimates. For

instance, the value obtained for (yearly) inflation trend is 3.4%, which falls nicely into the

range between the average inflation rate over the sample.13 Next, given the calibrated

discount factor β, the implied value for the (yearly) natural interest rate is 5.45%, which is

close to the average federal funds rate over the sample (namely 5.2%).

As for the values we found for the SL mutation parameters, we can see that they are all

in line with the values usually employed in numerical simulations in the related literature

(Arifovic et al. 2013). The optimized values of ρy and ρπ imply that agents’ memory is

bounded,14 which is highlighted by experimental evidence (Anufriev & Hommes 2012) and

empirical estimates from micro data (Malmendier & Nagel 2016).

Our parsimonious model is therefore able to jointly and accurately reproduce ten salient

features of macroeconomic time series and survey data – including the ELB duration and

the pervasive heterogeneity in forecasts – while using plausible parameter values. Crucially,

our model avoids diverging dynamics at the ELB without the need for exogenous restrictions

on the model or the expectation process. In contrast to our model, Appendix C reproduces

the same moment-matching exercise as above using a common alternative model of het-

erogeneous expectations based on endogenous switching between two rules: mean reversion
13Consider that the sample includes the 1970s (4.3%) and that the Fed inflation (2%) target was adopted

later.
14If one discards observations weighted less than 1%, we have 0.8325 < 0.01 and 0.547 < 0.01, which

implies that agents’ memory amounts to roughly 25 quarters for forecasting the output gap and 7 quarters
for forecasting the inflation gap.
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and potential extrapolation (Branch & McGough 2010, Hommes & Lustenhouwer 2019b).

This alternative model can be described as an heuristic-switching (HSM) NK model. The

well-known diverging deflationary dynamics at the ELB under this alternative prevent the

calibration of the model other than under a setting with shadow-rate in which the occasion-

ally binding constraint on the nominal rate is ignored. Yet, even within the shadow-rate

setting, the adaptive-learning model fails to produce heterogeneity in inflation expectations

(see table 7 in Appendix C). The better fit of the alternative model under shadow rates

only comes from a closer match of the autocorrelation of the real variables with their empir-

ical counterparts, but as explained above in Footnote 12, this is not a desirable or realistic

outcome.

Finally, in line with Coibion & Gorodnichenko (2015), we assess the ability of each model

of expectations to account for the properties of expectation errors in the SPF. To do so, in

Table 4, we regress the ex post average forecast errors on the average forecast revisions

in both the SL expectation data and the alternative heterogeneous-expectations model.15

The resulting estimated coefficient maps into the degree of information rigidity, which may

be then compared with its empirical counterpart in the SPF. Under RE, the estimated

coefficients, denoted by β, should be non-significant. However, in the SPF the estimated

coefficients are significantly positive (even higher than those based on inflation forecasts),

which represents an under-reaction to news with a degree of information rigidity equal to
β

1+β (Coibion & Gorodnichenko 2015, Bordalo et al. 2020). Therefore, it is striking to see

that SL expectations are also characterized by such a high degree of information rigidity. By

contrast, the alternative model delivers negligible rigidity in inflation forecasts and even an
15All expectations are one-step-ahead in our model. Therefore, to obtain forecast revisions in the absence

of different vintages, we interpret SL expectations as expectations of long-run inflation and output gaps that
are revised over time.
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Estimated Model: zt+1 − ESL
t (zt+1) = c+ β

(
ESL
t (zt+1)− ESL

t−1(zt)
)

+ errort
Variable Aggregate SL expectations Aggregate HSM expectations
z = π 0.980*** 0.132***

(0.044) (0.013)

z = y 0.986*** -0.094***
(0.125) (0.012)

Notes: ∗∗∗ sign. at 1%, ∗∗ sign. at 5%, ∗ sign. at 10%. Estimated β-coefficients, with standard deviations between brackets.
Under SL, regressions are performed over 10,000 MC simulations with fixed effects for each chain of shocks, hence the relatively
small estimated standard deviations.

Table 4: Estimation of information rigidities in expectations

overreaction to news (i.e. a significantly negative coefficient) in output-gap forecasts.

These comparison exercises have demonstrated the interesting empirical properties of

our SL model at the micro level . We may now proceed to the analysis of the underlying

propagation mechanism in the model induced by SL.

4 Dynamics under social learning

This section first analyzes the stability properties of the targeted steady state under SL.

To unravel the dynamics of expectations at the ELB, we analyze one transitory path to

the target as an illustration. Next, we systematically compare the business cycle properties

under SL and RE and assess the welfare loss entailed by heterogeneous expectations with

respect to the RE representative agent benchmark.

4.1 Stability analysis

We will now examine here the asymptotic behavior of the model over the entire state space

of the endogenous variables (π̂, ŷ), as displayed in the introduction (see, again, Fig. 2). To
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this end, we employ Monte Carlo simulations. Figure 5 represents the phase diagram of the

model where the average inflation gap expectation (i.e. the average of the {aπj } values across

agents) is given on the x-axis and the average output gap expectation (i.e. the average of

the {ayj} values) on the y-axis. The initial strategies are drawn around each point of the

state space, and we repeat each initialization configuration 1,000 times with different seeds.

We obtain the phase diagram by imposing a one-time expectational shock from the target

to each point of the state space and then assess whether inflation and output gaps converge

back on the targeted steady state (see Fig. 5a) and if so, at what speed (see Fig. 5b). The

two figures show that the model either converges to the target (in gray-shaded areas) or

diverges along a deflationary spiral (in white areas).

The main message from this exercise is that the basin of attraction of the target under

SL is larger than the determinacy region of the targeted steady state under RE. To see

this, notice that there is a considerable locus of points on the left-hand side of the stable

manifold associated with the saddle point under recursive learning (red dashed line in Fig.

5), from which the model converges back to the target under SL.16 By contrast, we know from

the related literature that this manifold marks the frontier between (local) determinacy and

indeterminacy under RE. It also marks the frontier between (local) E-stability and divergence

under adaptive learning (see Evans et al. (2008) and Appendix A.3 for further details and

references). This is because, under adaptive learning (or any form of purely backward-looking

expectations), expectations become trend-extrapolating in this region of the state space. A

single forecast in this region results in a negative forecast error (πt+1 − EAL
t (πt+1) < 0).

Therefore, realized inflation and output gaps decline even further below their expected values
16As a consequence, in our model, the low-inflation state is unstable under SL as it belongs to the basin of

attraction of the target: if expectations shift onto the low-inflation state, they will eventually converge back
to the target. Hence, the stability result in Arifovic et al. (2018), that is obtained under infinite memory in
the fitness function, does not generalize to our setup, in which agents discount past observations.
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(a) Stability of the target under SL (b) Speed of convergence to the target under SL
Notes: See explanations at the end of Section 2.3. We perform 1,600,000 Monte-Carlo simulations over 1000 periods. The
targeted steady state is denoted by the green dot, and the deflationary steady state by the red one. The ELB frontier (yellow
dashed line) is the locus of points for which −r = φππ̂ + φy ŷ: on the left-hand side, the ELB binds. The stable manifold
associated with the saddle low inflation steady state (red line) is computed under recursive learning and corresponds to the
stable eigenvector ofBelb: on the left-hand side, the model is indeterminate under RE and E-unstable. The empty area represents
pairs of expectation values for which the model diverges along a deflationary spiral. We define convergence as ε-convergence, i.e.
inflation and output respectively enter and do not exit the neighborhood [−επ , επ ] and [−εy , εy ] with {επ , εy} = {0.1%, 0.5%}.
Results are robust to tighter convergence criteria.
Left: The darker, the higher the probability to converge back to the steady state. Right: The darker, the faster the convergence
back to the steady state.

Figure 5: Global dynamics under social learning

and diverge (πt − πt−1 < 0), which causes agents to revise their expectations even further

downward and eventually drives the economy along a deflationary spiral.

By contrast, under SL, individual expectations do not systematically adjust to the release

of newest data points for inflation and output gaps. The best forecasters, evaluated over the

(recent) history, also tend to be those who do not update their expectations much (because

they are more likely to win the tournament). Even if the economy hits the ELB, the recent

inflation and output experience of the agents is not consistent with a deflationary spiral (just

as in real-world economies). Therefore, the strategies that would extrapolate a deflationary

path (i.e. the most pessimistic ones) are not useful for predicting the recent history; as
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such, tend to be discarded. This is the case even after a strong pessimistic shift: as soon as

some individual forecasts remain for some time above the red line in Fig. 5 (albeit below

the target), these less pessimistic forecasts, which are historically more accurate, spread out

and steer the economy back to the target. Conversely, our model may also lead to self-

sustaining deflationary spirals when shifts in expectations are large enough to throw the

entire population of strategies beyond the stable manifold. However, for this to happen, as

shown by the white area in Figure 5a, the one-time shift in expectations has to be implausibly

large given where the actual data lie, as depicted by Fig. 2.

Therefore, we provide an expectations model where social interactions aggregate dis-

persed information by relying on a collective memory and experience: agents evaluate their

strategies with respect to a common past history. Collective memory introduces inertia pro-

cess of expectation formation and updating, and favors mean-reverting forecasting strategies

– even if the mean reversion may be particularly slow, as depicted in Figure 5b. Under SL,

agents discard forecasting strategies that are not consistent with their common experience, a

mechanism that echoes the growing literature on experience and economic decision-making

(see the recent review by Malmendier & Wachter 2023).

Another noteworthy observation is given by Figure 5b. Using the same state space as

Figure 5a, the figure reports the speed of convergence to the target for each pair of initial

average expectations. The darker the area, the faster the convergence. It is striking to see

that the closer expectations are to the targeted steady state, the faster the convergence. In

general, there is a locus of points, spiraling around the target, where convergence is fast.

This is consistent with the complex eigenvalues associated with that steady state.

Most interestingly, the area in the southwest of the target, beyond the stability frontier,

is depicted in light gray. This means that for those severely pessimistic inflation and output
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gap expectations, the model under SL does converge back to the target, but does so at a

particularly slow speed. This area is beyond the ELB frontier (yellow dashed line), which

indicates that the ELB is binding yet the model does not diverge along a depressive downward

spiral.

These observations show that our model can produce persistent but non-diverging episodes

at the ELB, and heterogeneity in expectations plays an essential role in generating those dy-

namics. To shed more light on these dynamics, we now focus on a single expectational shock

and study how it propagates in the model.

4.2 Illustration of persistent dynamics at the ELB

Fig. 6 illustrates the persistent dynamics at the ELB by plotting the path from one particular

point of the state space back to the target.17

Such a shock produces a prolonged depressive episode at the ELB: inflation and interest

rates exhibit considerable persistence below their respective targets while the output gap

recovers faster, and even temporarily overshoots the steady state. These dynamics under

SL are empirically much closer to the recent economic history discussed in the introduction

than the excess volatility in the indeterminacy region under RE or the diverging deflationary

paths under adaptive learning.

Let us now unravel the underlying forces at play under SL that deliver these empirically

appealing dynamics. The initial deviations from the steady state are triggered by the pes-

simistic shock alone, while the resulting environment of low inflation and ELB stems entirely

from the sluggish dynamics of expectations under SL and their self-fulfilling nature in the
17In the simulations, expectations travel to pessimistic regions of the state space as a result of the combi-

nation of SL and a series of adverse fundamental shocks. Here, we consider an arbitrary shift in expectations
and use the point (0, -14)% as an example of a starting point on Fig. 5.
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Figure 6: Illustrative transitory path of the model after an expectation shock

NK model.

As explained in Section 4.1, right after the shock, the elimination of the most negative

forecasts rules out the possibility of deflationary spirals and generates the ‘missing disin-

flation’ along the past of the bust. Per their self-fulfilling nature, below-target forecasts

nurture the downturn, which triggers an accommodating response from the CB. This stim-
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ulating monetary policy has the largest impact on the output gap, which eventually turns

positive.

In particular, the paths of inflation and the average inflation expectations almost perfectly

overlap, which means that low inflation forecasts are almost self-fulfilling and deliver near-

zero forecast errors, which allows them to diffuse among the agents. This selection mechanism

explains the considerable persistence in inflation and inflation forecasts depicted in Figure 6.

Inflation and inflation expectations cannot converge back to the target until the combined

force of positive output gaps and low interest rates becomes strong enough to overcome

the almost self-fulfilling force of low inflation expectations.18 These dynamics generate the

inflation-less recovery. This prolonged period of positive output gaps may also suggest that

the economy may settle back to equilibrium only after full tapering by the CB.

Finally, it is interesting to note that our model reproduces another stylized fact discussed

by Mankiw et al. (2003): a recession is associated with an increase in the dispersion of

forecasts among agents – or, in other words, the level of disagreement between agents. In

this simulation, the correlation between the output gap and output gap forecast dispersion is

in fact significant and reaches -0.34. Indeed, Figure 6 reports how the dispersion of individual

expectations spikes in the aftermath of the shock. The rise in forecast dispersion does not

last; this is because the selection pressure of the SL algorithm pushes the agents to adapt to

the ‘new normal’ in the aftermath of the shock. The level of heterogeneity between agents

then returns to its long-run value, which is dictated by the size of the mutations.
18Admittedly, the number of periods before convergence back to the target appears implausibly large, but

the model does a good job once one bears in mind that the only policy in our simple model is a Taylor
rule constrained by the ELB. Our model abstracts from many empirically relevant dimensions of policy that
would be likely to play a role in fostering the recovery. The simple structure of the model depicts inflation as
almost entirely expectation-driven. It also ignores many other empirically relevant determinants of inflation
which could also entail a quicker inflation response.
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We conclude that our simple model offers a stylized representation of the observed loss of

anchoring of long-run inflation expectations depicted in Figure 1. More generally, this model

provides an interpretation based on expectations for the inflation dynamics in the wake of

the Great Recession and the ensuing recovery as discussed in the introduction. With this

model, we offer a reading of this state of affairs as the consequence of the coordination of

agents’ expectations on pessimistic outlooks.

From an allocation perspective, the coordination of expectations on large and persistent

recessive paths pulls the economy into second-best equilibria with respect to the benchmark

representative-agent model under RE.19 Hence, SL expectations can be envisioned as a fric-

tion with respect to the RE representative-agent allocation, which may imply a substantial

welfare cost, as we now demonstrate.

4.3 Welfare cost of social learning expectations

To evaluate this cost, we use the welfare function, which has become the main criterion, to

compare alternative policy regimes. Following Woodford (2002), we consider a second-order

approximation of this criterion and use the unconditional mean to express it in terms of

the volatility of aggregate and idiosyncratic variables. The detailed derivations and explicit

forms are deferred to Appendix A.4.

The corresponding welfare function for the average SL agent j reads as:

Et (Wt) ' u0 − uγEjvart (γ̂jt)− uyvart (ŷt)− uρEjvart (ρ̂jt)− uπEjvart (π̂jt) , (21)
19We refer to the RE counterpart of the NK model as the first-best equilibrium because we do not study

the welfare implications of the price rigidities and imperfect competition vs. the first-best allocation under
flexible prices.
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where γ̂jt = ĉjt − Ĉt is the percentage deviation of the consumption of agent j of aggregate

consumption; ρ̂jt = p̂jt − P̂t is the relative price of product j;20 u0 is the steady-state level

of welfare; and uγ, uy, uρ and uπ are, the elasticities of the welfare function with respect

to the variances of, in order, the idiosyncratic consumption deviation, output-gap, disper-

sion of relative prices and idiosyncratic inflation rates. It is straightforward to notice that

macroeconomic volatility and heterogeneity among agents reduce the welfare of households.

Note that in the absence of heterogeneity across agents (such as under RE), there is no

change in γ̂jt and ρ̂jt across time, thus var (γ̂jt) = vart (ρ̂jt) = 0. In addition, inflation rates

are identical across agents, which implies that Ejvart (π̂jt) = var (π̂t). The utility function

becomes:

Et (Wt) ' u0 − uyvart (ŷt)− uπEjvart (π̂t) . (22)

Comparing these two allocations results in a measurement of the welfare cost of expecta-

tion miscoordination, which can be expressed in permanent consumption equivalents (Lucas

2003). Using a standard no-arbitrage condition between the SL and the RE allocations, the

fraction of consumption λ that SL households are willing to pay to live in an RE world solves

the following conditions on utility streams:

ESLj,t

 1
N

N∑
j=1

∞∑
t=0

βtU ((1 + λ) cjt, hjt)

 = EREt

{ ∞∑
t=0

βtU (ct, ht)
}
. (23)

Table 5 compares the major business cycle statistics under RE and under SL using the

optimized parameters given in Table 3. This exercise allows us to disentangle the contribution
20Note that the consumption of agent j reads as ĉj,t = E∗

j,tŷt+1−σ−1(̂ıt−E∗
j,tπ̂t+1)+ĝt and the idiosyncratic

inflation rate of agent j as π̂j,t = βE∗
j,tπ̂t+1 + κŷt + ût.
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Expectations scheme
RE SL

var (π̂t) - inflation gap variance 0.1775 (0.002) 0.462 (0.029)
var (ŷt) - output gap variance 14.816 (0.159) 19.65 (0.644)
∆π
t - inflation gap forecast dispersion − 0.200 (0.001)

∆y
t - output gap forecast dispersion − 0.399 (0.002)

E [Ut] - utility -1.3605 (0.0001) -1.3879 (0.002)
λ - welfare cost − 0.008652 (0.0005)
P [̂it=-r̄] - ELB probability 0 (0) 0.170 (0.026)

Notes: Average statistics (and standard errors between brackets) over 9,400 Monte Carlo simulations of 200
periods under SL (94 series of shocks repeated 100 times) and over the same series of shocks under RE.

Table 5: Business cycle statistics and welfare under RE and SL using SMM-consistent pa-
rameters

of exogenous fluctuations in the RE-NK model from those additionally induced by SL.

Table 5 shows that SL expectations induce considerably more macroeconomic volatility

than under RE, especially by inducing endogenous ELB episodes, as explained above. These

self-fulfilling recessions substantially deteriorate the welfare of households in comparison to

the RE benchmark. By contrast, under the assumption of i.i.d. shocks, the rational forecasts

of inflation and output gaps boil down to their respective targeted values (see Section 2.2).

Therefore, under RE, expectations remain anchored, self-fulfilling ELB episodes cannot occur

and macroeconomic volatility is negligible.

The resulting cost of SL expectations with respect to RE reaches up to 0.87% of per-

manent consumption. This cost creates room for additional monetary policy instruments,

especially communication, to enforce the additional objective of coordinating the private

sector on the target.
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5 Central bank communication

We first introduce a simple form of CB communication to develop intuition on its anchoring

effect on expectations and then discuss how these insights may inform a broader range of

topical communication policy debates.

5.1 Modeling communication under SL

We represent communication as an announcement, which we denote by ACBt , made by the

CB at the end of any period t. In the model, this is an announcement about inflation in the

next period (t+ 1). We focus on inflation because it is the main objective under an inflation

targeting regime.

To introduce the CB announcements into the SL algorithm, we follow Arifovic et al.

(2019), albeit in a simpler game. Besides her output and inflation gap forecasts (ayj,t and aπj,t),

each agent j now carries a probability ψj,t ∈ [0, 1] of incorporating the CB announcement into

her inflation forecast in any period t. If she does so, her inflation forecast in t+ 1 is simply

the CB announcement. Conversely, with a probability 1−ψj,t, she ignores the announcement

and sets her inflation forecast equal to her forecast aπj,t as before. The determination of her

output gap forecasts remains unchanged and equal to ayj,t.

Formally, in the presence of announcements, the expectation formation process of the

agents given by (5) is modified as:

ESL
j,t {π̂t+1} =


ACBt with probability ψj,t

aπj,t with probability 1− ψj,t

ESL
j,t {ŷt+1} = ayj,t. (24)
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The communication-augmented inflation forecast {(ψj,t, aπj,t)}j∈J undergoes the same mu-

tation and tournament processes as the output gap forecast ayj,t (see Section 2.3).21 The only

difference from the algorithm used so far lies in the computation of the fitness of inflation

forecasts, where Eq. (7) is modified as follows:

F π
j,t = −ψj,t

t∑
τ=0

ρτπ(π̂t−1−τ − ACBt−τ−1)2 − (1− ψj,t)
t∑

τ=0
ρτπ(π̂t−1−τ −mπ

j,t)2,

where the first (resp. second) term now corresponds to the discounted sum of squared

forecast errors had the agent followed (resp. ignored) the announcements of the CB.

The probabilities {ψj} can be easily interpreted as the credibility of the announcements.

If agents following the announcements (i.e., agents with a relatively high value of ψj) have

lower forecast errors than agents ignoring the announcements (i.e. agents with a relatively

low value of ψj), then following as a strategy will spread among agents, which means that

the average value of ψ across agents will increase. The opposite holds if following the

announcements performs more poorly than ignoring them. Thus, SL agents endogenously

build trust or distrust in the communication of the CB as a function of the relative forecasting

performances of each alternative. We now develop two simple examples of announcements

to show how communication affects expectations.

5.2 Two simple communication examples

We consider the following two communication examples under SL.
21In the simulations below, the initial credibility {ψj,0} is drawn from a normal distribution centered

around 0.5 with a standard deviation equal to 0.25, a value that is also taken to dictate the mutation process
of the probabilities {ψj,0}. Results are insensitive to alternatives.
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The CB announces the inflation target We then have ACBt = 0 (as the model is

written in deviations from the steady state). It should be noted that the target corresponds

to the RE inflation forecasts in our simple model. The announcement of the CB is therefore

consistent with the conduct of monetary policy under RE. Hence, the inflation target is

redundant information to RE agents, but this piece of information may play a non-trivial

role under SL.

The CB announces its own inflation forecasts for the next period We assume that

the policy authority estimates a commonly used VAR forecasting model that is recursively

updated with new observations in each period. Note that assuming VAR forecasting amounts

to assuming that the CB is aware of agents being boundedly rational and, therefore, includes

past realizations of the endogenous variables in its forecasting model to account for the

propagation mechanism induced by learning. Indeed, such a forecasting model would be

misspecified should the agents have RE and, hence, the economy evolve according to the

MSV solution. In this second communication scenario, the announcement of the CB is

therefore consistent with the conduct of monetary policy under SL.22

We now develop intuitions on how communication affects agents’ expectations under SL.

First, Table 6 compares the business cycle statistics of the model under RE and SL – for

ease of reading, the first two columns recall the statistics in Table 5 – and under the two

communication scenarios, i.e., when the target and the inflation forecasts are announced.

The first three rows of Table 6 indicate that communication significantly improves macroe-
22The MSV solution under SL is a complicated and non-linear function of all the states in the system,

including those pertaining to the SL process, and an explicit form is not available. We claim that the best
the CB can do in such an environment is to estimate the law of motion of the economy with an atheoretical
model, such as a VAR. We choose 8 lags, in line with the memory of the agents that is implied by the
optimized value of the fitness memory on inflation (see, again, Table 3). Results are robust to more or fewer
lags.
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RE SL SL SL
No communication No communication target VAR(8) forecast

Macroeconomic variability
var (π̂t) 0.178 (0.002 ) 0.463(0.029 ) 0.215 (0.010 ) 0.245 (0.010 )
var (ŷt) 14.81 (0.159 ) 19.65 (0.644 ) 17.18 (0.310 ) 17.12 (0.304 )

ELB frequency
P [̂it=-r̄] 0.000 (0.000 ) 0.170 (0.026 ) 0.038 (0.012 ) 0.002 (0.001 )

Expectations dispersion
∆π
t - 0.200 (0.001 ) 0.138 (0.004 ) 0.155(0.0045 )

∆y
t - 0.399 (0.002 ) 0.396 (0.002 ) 0.397 (0.002 )

Expectations anchoring
Ωπ
t 0.000 (0.000 ) 0.887 (0.107 ) 0.108 (0.020 ) 0.176 (0.003 )

Ωy
t 0.000 (0.000 ) 10.03 (1.220 ) 6.433 (0.336 ) 6.310 (0.359 )

Welfare cost
E [Ut] -1.3605 (0.0001 ) -1.3879 (0.001 ) -1.3732 (0.001 ) -1.3767 (0.001 )
λ 0.00 0.008652 (0.0005) 0.003957 (0.0002) 0.005061 (0.0002)

Notes: See Table 5.

Table 6: Business cycle statistics under RE, under SL and with CB communication about
the inflation target and the inflation forecasts

conomic stabilization with respect to the baseline SL model: the volatility of inflation de-

creases by more than 50% and the risk of ELB episodes drops considerably. A look at the

next four lines of Table 6 reveals that not only are expectations better coordinated (i.e. dis-

agreement between agents is reduced) in the presence than in the absence of communication,

but coordination occurs around the CB objectives (i.e. expectations are better anchored at

the target).

Hence, we first conclude that in our model, CB communication acts as an anchor for het-

erogeneous expectations and, by improving their coordination, communication contributes

to macroeconomic stabilization. This effect translates into a narrower, yet positive, welfare
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Figure 7: Illustrative transitory path of the model to a one-period -14% output gap expec-
tation shock under various communication scenarios

gap with respect to the RE representative agent benchmark.

Next, we consider the same illustrative transitory path as in Section 4.2 with communica-

tion; see Figure 7. In the wake of the shock, both communication scenarios result in a loss of
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credibility. As a consequence, both types of announcement temporarily lose their anchoring

power on agents’ inflation expectations; see Figure 7h, where credibility invariably drops

towards zero right after the shock. When announcing the target, this credibility loss stems

from the actual realizations of inflation drifting away from the target. When announcing

forecasts, the credibility loss results from the inaccuracy of the announced forecasts, as the

pessimistic shock is unexpected – to see that, look at the discrepancy between the plunging

inflation and the near-target announcements immediately after the shock (Fig. 7a vs. 7g).

In both cases, the forecasting performances of the followers deteriorate and a large fraction

of the agents stop following the CB’s announcements.

This credibility loss leads us to the second conclusion: in our model, agents need to ‘see

it to believe it’. In other words, if the CB’s announcements are decoupled from the actual

inflation dynamics, they lose their anchoring power on expectations.

Next, as time goes forward, the CB, by updating its model, provides more accurate fore-

casts and regains credibility. To see that, notice the similarity between the announcements

and actual inflation some periods after the shock. At the same time, this coordination on

the forecast announcements leads to a reduction in expectation heterogeneity – to see this,

notice the drop in inflation forecast dispersion (Fig. 7c) as credibility increases (Fig. 7h). By

contrast, if just announcing the target, the CB only regains its credibility once inflation has

converged back to the target, which may take a considerable amount of time, as discussed

in Section 4.

Yet announcing forecasts is not a panacea: doing so also accentuates the downturn.

Indeed, inflation dives deeper, the ELB binds for a longer period (Fig. 7j) and output

overshoots further (Figs. 7d-7e) than when the CB announces its target. This observation

illustrates an important pitfall of communication: by extrapolating the bust, the announced
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forecasts may turn self-defeating due to the self-fulfilling nature of expectations, and con-

tribute to driving expectations away from the target. This striking effect is illustrated in

the three graphs of the average inflation forecasts (Fig. 7b), the CB forecast announcements

(Fig. 7g) and the actual inflation (Fig. 7a), all of which almost overlap.

5.3 A broader policy perspective

From these two simple communication examples, we can inform a broader range of mon-

etary policy issues. For instance, our framework can inform the ‘forward-guidance puzzle’

(Carlstrom et al. 2012): under RE, any CB announcement about the future is immediately

incorporated into agents’ expectations and optimal decisions and triggers dramatic effects

right from the time of the announcement. Yet, empirical evidence contradicts such a strong

effect; see, inter alia, (Del Negro et al. 2012, Campbell et al. 2016). Based on our SL model,

imperfect credibility may play a central role in explaining this puzzle.23 If agents need to

‘see it first to believe it’, announcements that are at odds with the actual inflation dynamics

have a milder effect on expectations and hence actual decisions than under the full credibility

assumption underlying RE.

Another example of a topical policy debate that can be informed by our work is the

discussion about history-dependent rules, such as average-inflation targeting or price-level

targeting, which imply time-varying inflation targets. Per the self-fulfilling nature of inflation

expectations, inflation expectations need to be consistent with the new policy rule; in other

words, the desired future inflation rates need to be understood by the public and the ability

of the CB to deliver them needs to be credible. Those considerations reinforce the rationale
23Other solutions in the literature rely on weakening the effect of expected real interest rates on consump-

tion by adding frictions such as liquidity constraints, limited asset-market participation or habit formation
Del Negro et al. (2012). Related contributions explain the puzzle by weakening the expectation channel if
agents use k-level reasoning (Farhi & Werning 2019) or pay limited attention (Gabaix 2020).
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for intensifying the CBs’ efforts to communicate with the public.

Finally, announcing the CB’s forecasts can be envisioned within the inflation-forecast

targeting (IFT) framework. IFT is based on the principle that, given a long-term inflation

objective, the CB’s own inflation forecasts act as time-varying intermediate targets because

such a forecast path embodies all the relevant information available to the policy makers.

It has been conceived as a way to circumvent the rigidity of a purely rule-based reaction

function while avoiding any expectations drifts that may result from a discretionary approach

(Woodford 2007).

Our communication exercise shows how IFT allows the CB to coordinate inflation ex-

pectations despite the indeterminacy generated by the neutralization of the interest rate

feedback at the ELB. Communication may also be particularly relevant in a high-inflation

environment. IFT became particularly useful in the case of transition economies adopting

an inflation-targeting regime; see, e.g., Clinton et al. (2017) for the case of Czech Repub-

lic. In this case, the CB aims to bring inflation to the newly announced target and anchor

expectations there. It does so by announcing inflation forecasts that gradually converge to

the target in an attempt to coordinate expectations on these forecasts and gradually steer

inflation and inflation expectations towards the target. In the aftermath of the COVID-19

pandemic – characterized by elevated, broad-based and persistent inflation – such a commu-

nication is certainly part of the toolbox of CBs to reduce disagreement between agents and

steer their inflation expectations back on target.
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6 Conclusion

This paper develops a micro-founded model that features expectations-driven business cy-

cles. The key mechanism works through heterogeneous expectations that may lose their

anchoring to the target and persistently coordinate on below-target paths, which triggers

prolonged ELB episodes. Heterogeneous expectations are introduced via an SL process into

an otherwise standard two-equation macroeconomic model with a constrained Taylor rule.

Our model nests the RE representative agent benchmark. In particular, we use white-noise

fundamental shocks to isolate the contribution of non-rational expectations in the formation

of the business cycle.

Our first contribution is to bring such a model to the data and jointly optimize its

fundamental and learning parameters to match moments from both US inflation and output

gaps and the SPF. Our parsimonious model is able to account for ten stylized facts, including

properties related to heterogeneity in forecasts, persistence in macroeconomic variables and

the endogenous occurrence of ELB episodes.

We then analyze the dynamics of the model and show that the basin of attraction of

the target under SL is larger than the determinacy region under RE. In the context of

our model, ELB episodes are times in which expectations have coordinated on pessimistic

outlooks following a series of adverse fundamental shocks. In another word, expectations

have visited regions of that basin from where the transition back on the target does occur but

at a particularly slow pace. Our second major contribution is then to provide a framework

that can account for the inflation experience from the aftermath of the Great Financial

Crisis to the COVID-19 pandemic that is challenging to capture in macroeconomic models.

In particular, our model accounts for the ‘missing disinflation’ during the Great Recession,

per its stable but below-target dynamics and extensive ELB episodes. It also accounts for the
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‘inflation-less recovery’ resulting from the combination of unanchored inflation expectations

– which put downward pressure on inflation – and the boosting effect of low interest rates

on output.

Finally, we extent our model to illustrate how CB communication may influence expecta-

tions. In our model, the credibility of the announcements is not a priori granted but rather

follows the same evolutionary process as the forecasts of the agents. From two simple exam-

ples, we show that this endogenous credibility plays a central role in reshaping expectations:

in our model, agents need to ‘see it to believe it’. Moreover, pessimistic inflation forecasts

may turn self-defeating, per the self-fulfilling nature of inflation expectations. From these

observations, we discuss broader policy implications to shed light on recent debates. Our

exercise is relevant to address issues such as the forward-guidance puzzle, the implementa-

tion of history-dependent rules or address current challenges such as volatile and elevated

inflation.

Our model offers a simple framework that nevertheless opens up the possibility for ana-

lyzing a rich set of monetary policy alternatives. As for our optimization routine, it may be

applied to a wide range of standard workhorse models, which could then be explored under

heterogeneous expectations. Those research avenues are left for future work.
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Online Appendix
(not for publication)

A Derivations of the model

A.1 A micro-founded heterogenous expectations model
We develop here a standard NK model with heterogeneous expectations shaped by social
interactions. The time dimension and the number of firms and households are discrete.
Specifically, we assume that there are N firms and households, indexed by j = 1, . . . , N ,
that are similar (in particular in terms of preferences and technology) except when it comes
to their inflation and output expectations. Each firm is permanently matched to a household
j which owns it, such that expectations of agent j refer to the corresponding household-firm.

A.1.1 Heterogeneous expectations under SL

Under the social-learning (SL) algorithm of Arifovic et al. (2013), the information set of
the agents differs from the one prevailing under RE. Let E∗t {·}, ∗ = {RE, SL}, denote the
expectation operator for RE and SL, respectively.. Let x denote the variable that agents in
the model forecast. Agent j’s expectation is given by:

ESLj,t {xt+1} = exp(axj,t)EREt {xt+1} , (25)

where EREt {xt+1} corresponds to the rational expectation of variable x for t + 1 given the
information set available at time t and exp(axj,t) is the idiosyncratic information of agent j
about future realizations of x (affected by the SL algorithm up until period t − 1). It is
assumed from the SL expectation scheme that exp(axj,t) follows some stochastic process with
mean 1.

In the absence of autocorrelation in exogenous disturbances, there is no state variable in
the RE solution. As a consequence, expectations are always anchored to their steady-state
values, namely EREt {xt+1} = xT , for x = π, y. Consequently, Equation 25 becomes:

ESLj,t {xt+1} = exp(axj,t)xT . (26)

Taking a first-order approximation of Equation 25 around the steady state yields the
following expression:

ESLj,t {x̂t+1} ' axj,t, (27)
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where variables with a hat denote log-deviations from their steady-state values.

A.1.2 Households

Our economy is populated by an infinitely-lived family composed of a discrete number N of
members, indexed by j ∈ [1, ..., N ]. Each member decides about their consumption, labor
and saving plans in order to maximize the household’s welfare:

1
N

N∑
j=1

E∗j,t
∞∑
τ=0

βτ
1

1− σ′

(
cjt+τ − χ

h1+ϕ
jt+τ

1 + ϕ

)1−σ′

. (28)

The individual utility is increasing in consumption cj,t and decreasing in labor hj,t, where σ′
and ϕ are curvature parameters and β is the discount factor. Note that the utility function
is non-separable, based on the utility function of Greenwood et al. (1988). This specification
is convenient in heterogeneous-agent models as non-separability mutes the wealth effect in
the labor supply, which ensures that all members of the family supply the same amount of
hours h. Because N is large enough, each agent assumes that their decisions do not impact
the aggregate variables.

Family members face an intertemporal problem: they determine the levels of consumption
cj,t, hours worked hj,t and real-bond holdings bj,t which maximize the welfare of the family
under the following budget constraint which binds in every period:

cj,t + bj,t = it−1

πt

bj,t−1

exp (ςgĝt)
+ Πj,t + wthj,t + Tj,t, (29)

where wt is the real wage (symmetric across members as they all have the same marginal
product of labor); it−1 the nominal interest rate payable on bond holdings bj,t−1; Πj,t is the
share of the real profits from monopolistic competition paid to member j; πt the inflation
rate between periods t − 1 and t; and Tj,t the lump-sum government transfers, which may
be positive or negative. Variable ĝt denotes an exogenous source of aggregate fluctuations,
referred to as the risk-premium shock in the Smets & Wouters (2007) model, and is affected
by the elasticity parameter ς = σ′ (1−χ)

ϑ
, which normalizes the shock in the linearized version

of the aggregate-demand equation.
Agents choose their consumption and savings plans (cj,t,bj,t) conditional on their inflation-

and output-gap expectations. Hence, heterogeneity in expectations may entail heterogeneous
consumption values and wealth across agent types j, which poses a challenge for aggregation,
in particular when saving is used in the production through capital goods. With labor as the
unique input in the production function and in the absence of any borrowing constraint, the
level of consumption is solely determined by the Euler equation, in which the idiosyncratic
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saving stock does not directly affect consumption patterns.24 The idiosyncratic saving stocks
bj,t may be positive if saving or negative if borrowing. Nonetheless, each family member is
not allowed to run a Ponzi scheme. Therefore we do not need to track the individual bj,t
because they do not affect consumption under the assumptions of the model. The aggregate
demand for government bonds reads as follows: Bt = ∑N

j=1bj,t. Finally, note that as in
learning models with an ELB constraint, the transversality condition may not hold locally.
If the ELB binds, agents may postpone consumption, which reinforces the deflation and sends
the economy into a deflationary spiral. This may happen, albeit infrequently, whenever a
negative shocks on the expectations is too large, as explained in Section 4.1.

Each household j solves the following problem:

max
{cj,t,hj,t,bj,t}

1
N

N∑
j=1

E∗j,t
∞∑
τ=0

βτ

 1
1− σ′

(
cj,t+τ − χ

h1+ϕ
j,t+τ

1 + ϕ

)1−σ′

+λ′j,t+τ
[
it−1+τ

πt+τ

bj,t−1+τ

exp(ςgĝt+τ )
+ wt+τhj,t+τ + zj,t+τ + Πj,t+τ − cj,t+τ − bj,t+τ

]
The first-order conditions are given by:

wtλ
′
j,t = χhϕj,t

(
cj,t − χ

h1+ϕ
j,t

1 + ϕ

)−σ′

λ′j,t =
(
cj,t − χ

h1+ϕ
j,t

1 + ϕ

)−σ′

exp (ςgĝt)λ′j,t = itβE∗j,t
λcj,t+1

πt+1
.

Linearizing each first-order conditions yields:

ŵt = ϕĥj,t, (30)
24Note that our assumptions are not crucial to the model because there exist mechanisms to impose a

homogeneous post-saving stock across households. For instance, Andrade et al. (2019) introduce an intra-
household risk-sharing plan under which, in each period, there is an agreement between household members
that the aggregate amount of bond holdings will be equally shared among them. This is achieved by a transfer
plan zj,t within the household to each member j in each period t that are equal to zj,t = bj,t − Bt/N . In
equilibrium, the sum of transfers is zero

∑N
j=1zj,t = 0. Hence, in each period, each household has the same

post-transfer wealth, even though their consumption levels may differ.
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and:

λ̂′j,t = −σ′
(
c̄j − χ

h̄1+ϕ
j

1 + ϕ

)−1 (
c̄j ĉj,t − χh̄1+ϕ

j ĥj,t
)
, (31)

λ̂′j,t = ı̂t − ςgĝt + E∗j,t
{
λ̂′j,t+1 − πt+1

}
. (32)

Eq. (30) shows that wages equal the marginal product of labor, which is the same across
all agents j due to their non-separable preferences. Moreover, at the deterministic steady
state of the economy, all agents have the same information exp(aπj,t) and exp(ayj,t) and, are
therefore identical. It thus follows that: c̄j = c̄, h̄j = h̄, ∀j.

Hence, we have:

c̄ĉj,t − χh̄1+ϕĥj,t = − ϑ
σ′

(
ı̂t − E∗j,tπ̂t+1

)
+ ϑςg

σ′
ĝt + E∗j,t

{(
c̄ĉj,t+1 − χh̄1+ϕĥj,t+1

)}
, (33)

where ϑ = c̄− χ h̄1+ϕ

1+ϕ .

A.1.3 Firms

To introduce a monopolistic-competition framework, the production process of goods is
divided between two types of firms: intermediate and final firms. Intermediate firms produce
different types of goods which are imperfect substitutes. We assume that each member j
owns an intermediate-sector firm j that produces an intermediate good yj and generates
profit Πj,t (in Eq. (29)). Hence, we may use the same indexes j and discount factors for
firms and household members. Final firms produce a homogeneous good by combining all
intermediate goods {yj}, j = 1, . . . , N .

Final sector The final-good producers are retailers. They buy the intermediate goods
and package them into the aggregate supply of goods, denoted by Y D

t , which in equilibrium
equals the aggregate good demand from households. In a perfectly competitive market, final
producers take the price P of the goods as given and maximize profits as follows:

PtY
D
t −

N∑
j=1

pj,tyj,t, (34)

subject to a supply constraint:

Y D
t =

N−1/ε
N∑
j=1

yj,t
(ε−1)/ε

ε/(ε−1)

. (35)

This supply constraint implies that the final-good producers have a technology which aggre-
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gates non-perfectly substitutable goods. This imperfect substitutability between all varieties
j is driven by the monopolistic competition on the intermediate good market. Each good
j is an imperfect substitute of degree ε > 1, allowing intermediate firms to gain positive
profits through a gap between their selling and producing prices. The intensity of the mo-
nopolistic competition is driven by ε/(ε− 1), which is the mark-up over the producing price
of intermediate firms.

The optimization problem of the final-good producers reads as follows:

L = PtY
D
t −

N∑
j=1

pj,tyj,t + %t

N−1/ε
N∑
j=1

yj,t
(ε−1)/ε −

(
Y D
t

)(ε−1)/ε
 . (36)

The associated first-order conditions are given by:

Pt − %t(ε− 1)/ε
(
Y D
t

)−1/ε
= 0, (37)

−pj,t + %t(ε− 1)/εN−1/εyj,t
(−1)/ε = 0, (38)

which can be rewritten as the standard CES downward-sloping demand function per firm j:

yj,t = Y D
t

N

(
pj,t
Pt

)−ε
. (39)

The aggregate-price index is given by:

Pt =
 1
N

N∑
j=1

p1−ε
j,t

1/(1−ε)

. (40)

Applying linearization methods to (39) and (40) leads to the following expressions:

ŷj,t = Ŷ D
t − ε

(
p̂j,t − P̂t

)
, (41)

P̂t = 1
N

N∑
j=1

p̂j,t. (42)

Expressing Equation 42 in growth rates provides the expression for the inflation rate:

π̂t = 1
N

N∑
j=1

π̂j,t (43)

Intermediate sector
Firms are homogeneous, distributed on an interval j ∈ [1, N ] and have the following
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linear production technology:
yj,t = hj,t, (44)

where yj,t is the production and hj,t is the labor input.
Intermediate-good producers solve a two-stage problem. In the first stage, taking the

labor price wt as given, firms hire labor hdj,t in a perfectly competitive labor market in order
to minimize their costs subject to the production constraint (44).

Stage 1: The first stage can be expressed as a profit-maximization problem:

max
{yj,thdj,t}

mcj,tyj,t − wthdj,t + λt
[
hdj,t − yj,t

]
, (45)

where mcj,t denotes the real marginal cost of producing one additional good. The first-order
condition leads to the expression of the real marginal cost:

mcj,t = mct = wt. (46)

Because households exhibit the same labor productivity, all firms hire households at the
same wage rate wt. Once the firms have determined their marginal cost, the next step is to
determine their mark-up over this marginal cost mct from the imperfect substitution of the
good varieties.

Stage 2: In the second-stage problem, the firms operate under a Rotemberg price-setting
mechanism. We define the Rotemberg price adjustment cost by:

acj,t = ξ′

2

(
pj,t
pj,t−1

− π̄
)2

Y D
t

N
, (47)

where ξ′ > 0 is the price stickiness parameter, Y Dt
N

is the average market share, and πT is the
CB target.
The profit maximization becomes dynamic because of the adjustment costs over prices. In
a monopolistic competition setting, firms face the following individual demand for goods:
yj,t = (pj,t/Pt)−ε Y D

t /N . The problem faced by firms is then given by:

max
{pj,t}

E∗j,t
∞∑
τ=0

Λj,t,t+τ

(
yj,t+τ

pj,t+τ
Pt+τ

− eςuût+τmct+τyj,t+τ − acj,t+τ
)
, (48)

where Λj,t,t+τ = βτλ′t+τ/λ
′
t is the households’ discount factor of agent j, pj,t is the individual

price set by firm j, and Pt is the aggregate price which sets in real terms the problem
of firms. Variable ût is an exogenous shock that captures exogenous changes in the cost
structure of firms. Parameter ςu allows to normalize the shock to one in the linearized form
of the aggregate-supply equation. Note that the tax rate on the added value, τj,t, is typically
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used in the NK literature to offset some market distortions and simplify the analysis of
optimal policy. Given the presence of heterogeneity with respect to the benchmark textbook
model, the tax rate set by the government is set to offset the relative dispersion in prices
τj,t = pj,t−Pt

pj,t
.

Replacing the demand function yj,t = (pj,t/Pt)−ε Yt/N , the objective function of the firms
reads as follows:

max
{pj,t}

E∗j,t
∞∑
τ=0

Λj,t,t+τ

(1− τj,t+τ )
(
pj,t+τ
Pt+τ

)1−ε
Y D
t+τ
N
− eςuût+τmct+τ

(
pj,t+τ
Pt+τ

)−ε
Y D
t+τ
N
− acj,t+τ

 .
(49)

The first-order condition reads as:

(1− τj,t)
(1− ε)
pj,t

(
pj,t
Pt

)1−ε Y D
t

N
+ eςuûtε

mct
pj,t

(
pj,t
Pt

)−ε Y D
t

N
− ξ′

pj,t−1

(
pj,t
pj,t−1

− π̄
)
Y D
t

N

+ E∗j,tΛj,t,t+1
pj,t+1

p2
jt

ξ′
(
pj,t+1

pj,t
− π̄

)
Y D
t+1
N

= 0. (50)

Rewriting in terms of firm-specific inflation rates gives:

(1− τj,t) (1− ε)
(
pj,t
Pt

)1−ε
+ eςuûtεmct

(
pj,t
Pt

)−ε
= ξ′πj,t (πj,t − π̄)

− E∗j,tΛj,t,t+1πj,t+1ξ
′ (πj,t+1 − π̄) Y

D
t+1
Y D
t

. (51)

Replacing the government tax on added value yields:

(1− ε)
ε

(
pj,t
Pt

)−ε
+ eςuûtmct

(
pj,t
Pt

)−ε
= ξ′

ε
πj,t (πj,t − π̄)

− E∗jtΛj,t,t+1πj,t+1
ξ′

ε
(πj,t+1 − π̄) Y

D
t+1
Y D
t

. (52)

Applying a linearization of this expression yields to:

(ε− 1) p̂j,t + (ε− 1) /ε (ςuût + m̂ct − εp̂j,t) = ξ′

ε
π̄π̂j,t −

ξ′

ε
π̄βE∗j,tπ̂j,t+1, (53)

with m̄c = (ε− 1) /ε.
The final inflation equation for each producer j reads as:

π̂j,t = (ε− 1) ϕ

π̄ξ′
ĥt + βE∗j,tπ̂j,t+1 + ût. (54)
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Note that ςu = ξ′π̄/ (ε− 1) normalizes the shock in the linear equation. because the marginal
cost is the same across firms, m̂ct = ŵt, and from the wage setting, the same across house-
holds ŵt = ϕĥj,t.

A.1.4 Authorities

Monetary policy. The monetary-policy authority, namely the CB, measures aggregate
expectations in the economy by collecting agent forecasts about gross inflation and output,
before setting its interest rate. In practice, central banks conduct surveys among firms
and households to measure the gap between the relevant target and agents’ forecasts. The
relevant information here concerns inflation and output, and is measured by an arithmetic
average of all of forecasts of inflation and production of the N agents populating the economy:

E∗tπt+1 = 1
N

N∑
j=1

E∗j,tπj,t+1 and E∗tYt+1 = 1
N

N∑
j=1

E∗j,tyj,t+1. (55)

The CB sets its interest rate according to a forward-looking Taylor rule subject to an ELB:

it = max
ı̄(E∗tπt+1

π

)φπ (E∗tYt+1

Ȳ

)φy
, 1
 , (56)

where parameters ı̄ , π and Ȳ are long-term values for gross interest, gross inflation rate
and average production, respectively. The CB reacts to the deviation of the gross inflation
from its steady-state value with a proportion φπ and φy for output.

The linearized version of the monetary policy rule reads as:

ı̂t = max (−r̄, φπE∗t π̂t+1 + φyE∗t ŷt+1) , (57)

with r̄ = log (̄ı) = log (π̄/β) = πT − log(β) and π̂t+1 the expected inflation rate in the
economy between periods t and t+ 1. Note also that linearized average inflation/production
forecasts read as:

E∗t π̂t+1 = 1
N

N∑
j=1

E∗j,tπ̂j,t+1 and E∗t ŷt+1 = 1
N

N∑
j=1

E∗j,tŷj,t+1, (58)

where E∗t (π̂t+1) and E∗t (ŷt+1) are the aggregate expectations of the inflation gap and the
output gap, respectively.

Government. The government implements a value-added tax on firms and borrow
Bt from households, while the expenditure side includes interest payments and lump-sum
transfers (where all household members receive the same amount). The balance sheet of the
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government reads as follows:

N∑
j=1

τj,tyj,t +Bt =
N∑
j=1

Tj,t +Bt−1it−1/πt. (59)

A.1.5 General Equilibrium

Intermediate sector. The general equilibrium in the intermediate-good market is given
by:

N∑
j=1

yj,t = Y D
t

N

N∑
j=1

(
pj,t
Pt

)−ε
, (60)

which, in a linearized version, reads simply as

Nȳ
N∑
j=1

ŷj,t = Ȳ D

NŷDt − ε
 N∑
j=1

p̂j,t −NP̂t

 . (61)

Using the definition in Equation 42 rules out the effect of price dispersion and allows one to
rewrite the general equilibrium as:

1
N

N∑
j=1

ŷjt = ŷDt , (62)

where Nȳ = Ȳ D.
Final goods sector. The resource constraint is given by:

Y D
t =

N∑
j=1

(
cj,t + ξ′

2 (πj,t − π̄)2 Y
D
t

N

)
, (63)

where the second term of the right-hand side of Equation 63 is the menu cost stemming from
the Rotemberg’s price adjustment.

Linearizing Equation 63 yields:

ŷDt = 1
N

N∑
j=1

ĉj,t, (64)

with c̄ = ȳ = Ȳ D/N .
Labor market. The labor-market equilibrium is reached when aggregate demand from
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firms satisfies:
N∑
j=1

hdj,t =
N∑
j=1

hj,t, (65)

which simply reads in a linearized version as :

N∑
j=1

ĥdj,t =
N∑
j=1

ĥj,t, (66)

since firms and households share the same steady-state values for the number of hours worked.

A.1.6 Aggregation

Labor demand dispersion. In presence of nonseparable preferences, the labor supply in
Equation 30 is the same across households:

ĥj,t = ĥt. (67)

Combining Equation 44 with the firm-specific demand for intermediate inputs in Equation 41
leads to the following expression

ĥdj,t = ŷj,t = Ŷ D
t − ε

(
p̂j,t − P̂t

)
. (68)

One can note that if a firm has a pricing strategy that is different from the average – i.e.,
p̂j,t 6= P̂t – its demand differs from the total demand – ŷj,t 6= Ŷ D

t – and generates a dispersion
in demand for labor, as well as output dispersion, across firms. This dispersion in labor
demand conflicts with households’ homogeneous labor supply in Equation 67.

Assumption 1 To map heterogeneous labor demand with homogeneous supply, it is
assumed that households evenly split their working time across all firms at no cost,
which translates formally as:

hj,t =
N∑
j=1

hdj,t
N

(69)

Linearizing this expression from Assumption1 and injecting Equation 68 allows us to
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express any agent-specific change in labor supply in terms of change in aggregate demand:

ĥj,t =
N∑
j=1

ĥdj,t
N

=
N∑
j=1

Ŷ D
t − ε

(
p̂j,t − P̂t

)
N

= Ŷ D
t + εPt − ε

N∑
j=1

(p̂j,t)
N

= Ŷ D
t

(70)

Even in the presence of heterogeneous demand for labor induced by price dispersion, the
general equilibrium assumption in Equation 66 holds. By assuming that households evenly
supply their labor to all firms, we rule out the dispersion term and greatly soften the aggre-
gation burden.

Aggregate demand. Consider the agent-level linearized Euler equation, Equation 33.
Aggregating across all household members leads to:

N∑
j=1

[
c̄ĉjt − χh̄1+ϕĥjt

]
=

N∑
j=1

[
− ϑ
σ′

[̂
ıt − E∗jtπ̂jt+1

]
+ E∗jt

{
c̄ĉjt+1 − χh̄1+ϕĥjt+1

}
+ ϑς

σ′
ĝt

]
,

which becomes:

c̄ĉt − χh̄1+ϕĥt = − ϑ
σ′
ı̂t + E∗t

{
c̄ĉt+1 − χh̄1+ϕĥt+1 + ϑ

σ′
π̂t+1

}
+ ϑς

σ′
ĝt,

where E∗t ĉt+1 = 1
N

∑N
j=1 E∗j,tĉj,t+1, E∗t π̂t+1 = 1

N

∑N
j=1 E∗j,tπ̂j,t+1 and E∗t ĥt+1 = 1

N

∑N
j=1 E∗j,tĥj,t+1.

General equilibrium in labor market allows one to write ĥt = ĥdt = ŷt, while general
equilibrium in intermediate goods entails ŷt = ŷDt = ĉt. The previous condition reads as:

(
c̄− χh̄1+ϕ

)
ŷt = − ϑ

σ′
ı̂t + E∗t

{(
c̄− χh̄1+ϕ

)
ŷt+1 + ϑ

σ′
π̂t+1

}
+ ϑς

σ′
ĝt,

Recall that, at the steady state, the hours worked are normalized to one, thus c̄− χh̄1+ϕ =
1−χ and ϑ = 1−χ/1+ϕ. Recall also that ς = σ′ (1−χ)

ϑ
. Hence, the aggregate Euler equation

in a compact form reads as:

(1− χ) ŷt = − ϑ
σ′
ı̂t + E∗t

{
(1− χ) ŷt+1 + ϑ

σ′
π̂t+1

}
+ (1− χ) ĝt. (71)
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which is of the same form as the aggregate demand (1) in Section 2.1.
Aggregate supply. From the micro-level NK Phillips curve in Equation 54, we may

aggregate over all agent types j:

N∑
j=1

π̂j,t =
N∑
j=1

[
(ε− 1) ϕ

π̄ξ′
ĥt + βE∗j,tπ̂j,t+1 + ût

]
,

which becomes:
π̂t = (ε− 1) ϕ

π̄ξ′
ĥt + βE∗t π̂t+1 + ût. (72)

Note that through a general equilibrium effect, we can rewrite this expression by replacing
aggregate labor with aggregate output (as in the usual formulation of the macro textbook)
as follows:

π̂t = (ε− 1) ϕ

π̄ξ′
ŷt + βE∗t π̂t+1 + ût. (73)

The monetary policy rule is left unchanged, as Eq. (57), which is the same as Eq. (3) in
Section 2.1.

A.1.7 Convergence between separable and non-separable utilities

In this section, we show which restrictions on the parameters of the non-separable utility
function allow the model to correspond to the one derived from separable preferences. This
step is deemed necessary to make our three-equation NK model similar to the ones found in
macro textbooks.

Marginal utility of consumption. Let λt and λ′t denote the marginal utility of con-
sumption under separable and non-separable preferences, respectively. These are given by:

λ̂t = −σĉt and λ̂′t = −σ′
(

1− χ
1− χ/ (1 + ϕ)

)
ĉt

Imposing λ̂t = λ̂′t results in the condition on σ′ under which both models exhibit the same
marginal utilities of consumption:

σ′ = 1− χ/ (1 + ϕ)
1− χ σ. (74)

We may substitute σ′ by σ into Equation 71 as follows:

ŷt = E∗t {ŷt+1} −
1
σ
E∗t {ı̂t − π̂t+1}+ ĝt. (75)

Slope of the New Keynesian Phillips Curve. Nonseparability in utility also affects
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the real-wage setting, and thus the marginal cost and the slope of the New Keynesian Phillips
curve:

κ = (ε− 1) (σ + ϕ)
π̄ξ

and κ′ = (ε− 1) ϕ

π̄ξ′
.

By imposing κ = κ′, we derive ξ′:
ξ′ = ϕ

(σ + ϕ)ξ. (76)

Under this second condition, the aggregate supply curve may be rewritten as follows:

π̂t = (ε− 1) (σ + ϕ)
π̄ξ

ŷt + βE∗t π̂t+1 + ût (77)

A.2 Solution under rational expectations
We solve the model under RE using the method of undetermined coefficients (with and

without the ELB).
Let us first define the gross and net inflation/interest rates as follows:

πT = log(π̄) and r̄ = log(̄i) (78)

Then, inserting Eq. (3) into Eq. (1) provides the reduced-form expression of the log-
linearized model:

zt = α(st) +B(st)Etzt+1 + χgĝt + χuût, (79)

with the two endogenous variables zt = (ŷt π̂t)′; matrices χg = (1 κ)′ and χu = (0 1)′ are
related to the shocks g and u while α(st) and B(st) are related to the steady-state values
and the forward-looking variables, respectively. The values of α and B depend on st, the
state of the CB’s policy. The two policy regimes are st = T and st = elb, such thatı̂ (st = T )t = φπEj,tπ̂t+1 + φyEj,tŷt+1

ı̂ (st = elb)t = −r,
(80)

The transition between the two regimes is given by matrix Q

Q =
[

qT 1− qT
1− qelb qelb

]
(81)

Given Eq. (79), the general form of the MSV solution reads as:

zt = a(st) + c(st)ĝt + d(st)ût, (82)

where the coefficient values in matrices a, c and d depend on whether the ELB is binding or
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not.
Taking expectations based on an AR(1) specification of the stochastic processes ĝ and û

with autoregressive coefficients ρg and ρu ∈ (0, 1) yields (assuming for now that shocks are
observable in t):



E
(
z (st = T )t+1

)
= qT{α (st = T ) + gt (c (st = T ) ρg) + ut (d (st = T ) ρu)}...

+
(
1− qT

)
{α (st = elb) + gt (c (st = elb) ρg) + ut (d (st = elb) ρu)}

E
(
z (st = elb)t+1

)
=

(
1− qelb

)
{α (st = T ) + gt (c (st = T ) ρg) + ut (d (st = T ) ρu)}...

+qelb{α (st = elb) + gt (c (st = elb) ρg) + ut (d (st = elb) ρu)}.
(83)

Given that shocks are i.i.d. ρg = ρu = 0, there is no source of persistence in the model
and expectations in their rational form are not history dependent. Thus the MSV reduces
to a vector of intercepts E (zt+1) = a(st). Given the fact that the Taylor rule is driven by
t + 1 expectations, the interest rate is static. Thus, there is no possibility for the interest
rate to move from one regime to the other and the ELB never binds under RE. Accordingly,
there is no probability of switching between the two regimes under RE, which is equivalent
to

Q =
[
qT = 1 0

0 qelb = 1

]
. (84)

Expectations boil down to: E
(
z (st = T )t+1

)
= aT ,

E
(
z (st = elb)t+1

)
= aelb.

(85)

It is possible to verify the values of Q by plugging the model into an occasionally-binding-
constraint-solution algorithm that endogenises the value of Q. We do so by using Occbin
from Guerrieri & Iacoviello (2015).25

Inserting Eq. (85) back into (79) uniquely identifies the MSV solution as:

zt = α (st) +B (st) a (st) + gtχ
g + utχ

u, (86)

with a(st) = (I−B(st))−1α(st), which makes clear that the coefficient values of matrices
B(st) and α(st) depend on the regime st

In this specific case, RE are either anchored to the targeted steady state or to the un-
intended steady-state. Under the occasional-binding-constraint logic, the targeted steady
state is the initial state in the model. We consider the REE at the targeted steady state

25Simulations are available upon request.
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that we denote by a ‘T’ superscript (for ‘target’). We insert the specification of the Taylor
rule (3) when the ELB is not binding (ı̂t = φπEtπ̂t+1 + φyEtŷt+1) into (1) and obtain the

expressions αT =
[
0
0

]
and BT =

[
1− σ−1φy σ−1(1− φπ)

κ(1− σ−1φy) β + σ−1(1− φπ)κ

]
.

The MSV-REE solution at the target is then given by:

aT = (I −BT )−1αT (87)

Similarly, when the ELB is binding, the monetary policy rule reads as ı̂t = −r. Inserting
this expression back into Eq. 1, the REE at the ELB, which we denote with an elb superscript,
is described by:

αelb =
[
σ−1r, κσ−1r

]
and Belb =

[
1 σ−1

κ β + σ−1κ

]
. (88)

The MSV-REE solution at the ELB is then given by:

aelb = (I −Belb)−1αelb (89)

To simulate the model under RE, we assume that expectations are anchored to the
targeted steady state so that the ELB is never binding.

A.3 Determinacy and E-stability
The REE (89) is determinate under RE if the two eigenvalues of matrix BT lie within the
unit circle. This is the case if all three conditions φy < σ(1+β−1), 0 < κ(σπ−1)+(1+β)σy <
2σ(1+β) and κ(φπ−1)+(1−β)φy > 0 hold (Bullard & Mitra 2002, p. 1121). Our calibration
imposes these restrictions on the parameters’ values. Specifically, the REE values at the
target are aT = (00)′, and the REE is determinate (the two eigenvalues are complex and
equal λ−i = .933− .027i and λ+

i = .933 + .027i). Note that the same conditions ensure that
this solution is E-stable, i.e., stable if agents use adaptive learning instead of RE (Bullard
& Mitra 2002).

By contrast, the REE at the ELB (88) is indeterminate under RE and unstable under
learning. To see this, notice that the characteristic polynomial of Belb is β + λ(−1 − β −
κσ−1) + λ2 = 0 ⇔ a0 + a1λ + λ2. For both eigenvalues to be within the unit circle and the
REE to be determinate, we need | a0 |< 1 and | a1 |< 1 + a0. The first condition always
holds as β < 1, but the second is always violated as σ−1κ > 0. Therefore, the deflationary
state is indeterminate under RE and features multiple equilibria.26

26Another way to see this is to note that the ELB corresponds to an interest rate peg that is known to
give rise to indeterminacy.
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Furthermore, the determinant of Belb − I (I being the identity matrix) is −σ−1κ < 0,
which implies that one eigenvalue of Belb− I has a negative real part and one has a positive
real part (equivalently, one eigenvalue of Belb is lower than one, the other is not). Therefore,
under learning, the deflationary steady state is unstable and is a saddle.

Under our calibration, the REE values at the ELB are aelb = (−0.007− 0.013)′, and the
two eigenvalues of Belb are real and equal λ−i = 0.906 < 1 and λ+

i = 1.099 > 1.

A.4 Calculating the welfare cost
In this section, we develop the approximation of the welfare criterion and use it to compute
the welfare cost of fluctuations.

A.5 Welfare function
The welfare function is the discounted sum of the average utility across family members:

Wt = 1
N

N∑
j=1

Ujt + βWt+1,

where the individual utility function of each household member reads as:

Ujt = 1
1− σ′

(
cjt − χ

h1+ϕ
jt

1 + ϕ

)1−σ′

.

Few changes are needed to be able to express the agent-specific utility function in the same
aggregate-variable terms as seen in macro textbooks. First, recall that all household members
supply the same amount of labor, hj,t = Yt/N . This means we can rewrite hj,t in term of
aggregate output. Second, recall that family members enjoy different consumption levels,
which can be expressed in terms of fractions of aggregate consumption as γj,t = Ncj,t/Ct,
with Ct = ∑N

j=1 cj,t. The resulting utility of agent j is given by:

Uj,t = 1
1− σ′

(
γj,t

Ct
N
− χ(Yt/N)1+ϕ

1 + ϕ

)1−σ′

.

To take into account the role of nominal ridigities, we use the resource constraint in
Equation 63 to replace aggregate output as follows: Ct = Y D

t

(
1− 1

N

∑N
j=1

ξ′

2 (πjt − π̄)2
)
. In

addition, we express output in supply terms using the general-equilibrium condition in the in-
termediate sector in Equation 60: Y D

t = Yt

(
1
N

∑N
j=1

(
pj,t
Pt

)−ε)−1
. This last term corresponds

to the dispersion across firms’ prices that entails an output loss.
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The utility of the j-th household member, expressed in terms of aggregate output and
inflation, is given by:

Uj,t = 1
1− σ′

γj,tyt
(
1− 1

N

∑N
j=1

ξ′

2 (πj,t − π̄)2
)

(
1
N

∑N
j=1 ρ

−ε
j,t

) − χ y
1+ϕ
t

1 + ϕ

1−σ′

,

where ρj,t = pj,t/Pt and yt = Yt/N .
Using a Taylor expansion of the utility function up to second-order terms, abstracting

from co-variance terms, the welfare function can be expressed in terms of asymptotic mo-
ments, namely unconditional mean Et(·) and variance vart(·). It leads to the following
expression:

Et (Uj,t) ' Ūj + Uγγ
2 vart (γj,t) + Uyy

2 vart (yt) +N
Uρρ
2 Ejvart (ρj,t) +N

Uππ
2 Ejvart (πj,t) ,

where derivatives are computed from a symbolic toolbox.
Note that Ejvart (πj,t) is the average volatility of inflation across firms, while Ejvart (ρj,t)

denotes the average variation in relative prices across firms. Note that in a representative-
agent model, the first term is the average inflation rate while the second term is zero, as the
relative price across producers is always one. The mean utility can be expressed in logs to
be consistent with the model’s definition, as follows:

Et (Uj,t) ' Ūj + Uγγ
2γ̄2 vart (γ̂j,t) + Uyy

2Ȳ 2
vart (ŷt) +N

Uρρ
2 Ejvart (ρ̂j,t) +N

Uππ
2π̄2Ejvart (π̂j,t) ,

where γ̄ = ȳ = 1.
In sum, the average welfare for the planner reads as:

EtEj (Uj,t) '
1
N

N∑
j=1
Ūj,t, (90)

which can be expressed as:

EtEj (Uj,t) ' Ūj + Uγγ
2 Ejvart (γ̂j,t) + Uyy

2 vart (ŷt) (91)

+N
Uρρ
2 Ejvart (ρ̂j,t) +N

Uππ
2π̄2Ejvart (π̂j,t) . (92)

Average utility is connected to average welfare as follows:
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EtWt = EtEj (Uj,t)
1− β , (93)

Rational expectation & representative-agent utility. Note that, in absence of
heterogeneity across agents (such as under RE), there is no change in γ̂j,t and ρ̂j,t across
time, thus var (γ̂j,t) = var (ρ̂j,t) = 0. In addition, there is no difference across inflation rates
Ejvar (π̂j,t) = var (π̂t). The utility function therefore becomes:

Et (Ut) ' Ū + Uyy
2 vart (ŷt) +N

Uππ
2π̄2 vart (π̂t) . (94)
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B Moment matching
We proceed by building on the related literature on the estimation of macroeconomic mod-
els using simulated moment matching methods; see (Hansen 1982, McFadden 1989). This
method aims to infer the values of structural parameters by minimizing the squared distance
between the moments simulated by a model and their observable counterparts.

B.1 The SMM estimator
Under the SL process, the model – described by Eq. 1 to 3 combined with the SL algorithm
introduced in Section 2.3 – can be expressed in the following compact form:

ESLt {fΘ (zt+1, zt, εt)} = 0, (95)

where zt is the set of endogenous variables, εt the set of i.i.d. shocks and fΘ (·) the equations
of the model based on the set of structural parameters Θ. First, we partition the parameters
Θ into two subsets. The first set contains the calibrated parameters as given in Table 1. The
second set, θ ∈ Θ, contains the parameters that are determined by SMM method.

The SMM estimator is defined as:

θ̂SMM = arg min
θ

[
mT (xt)−ms,τ

(
xθt
)]′

W
[
mT (xt)−ms,τ

(
xθt
)]
, (96)

where mT (xt) − ms,τ

(
x̂θt
)

is the distance vector between the observed and the simulated
moments that we seek to minimize, and W is a weighting matrix. Hence, the matrix product
in Eq. (96) provides the sum of the squares of the residuals between the observed and
matched moments. Let us now define mT (xt) , a p × 1 vector of moments calculated using
stationary and ergodic real data xt of sample size T , and ms,τ

(
xθt
)
. The model-generated

counterpart based on artificial series xθt using the set of parameters θ fed in (95), while s
is the number of parallel chains (or Monte-Carlo iterations) that we draw to compute the
moments with a sample size τ .

With respect to our optimization problem, we set p = 10 as we match exactly 10 moments.
Since our sample has a size T = 200 (quarters), we impose a similar size for our simulated
data T = τ = 200. We also fix the number of parallel chains to s = 100. As some specific sets
of parameters combined with specific realizations of shocks may create explosive dynamics for
some parallel draws, we discard these chains when computing the moments, and ensure that
this number of chain never exceeds 5% of the simulations. Finally, regarding the weighting
matrix W , we impose the identity matrix as θ̂SMM is consistent with any positive-definitive
weighting matrix (see Ruge-Murcia (2012) for a discussion on this aspect).

Note that the mutation process of the SL algorithm represents an additional source
of stochasticity beyond the fundamentals shocks (in this case, cost-push and real shocks).
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To deal with this new source of noise, we follow Arifovic et al. (2013, 2018) and take the
median simulation across the n different series of mutations. Doing so means that the
computation of the objective function in (96) would require computing n ∗ s ∗ τ values of
output and inflation.27 We therefore face a heavy computational burden for the inference of
the structural parameters, which we alleviate using two different assumptions: controlling
the noise arising from the SL process and adding information on priors. We discuss these
two aspects in the following subsections.

B.2 Managing the noise from the mutations
To reduce the computational burden, we first control the noise in mutations by selecting
the mutation sequence that generates the simulations that is the closest to the median.
Specifically, we draw s = 100 chains of shocks u and g at the beginning of the matching
procedure and keep them unchanged. For each of the s chains, we run n = 100 Monte
Carlo simulations of the model under SL and only retain one representative simulation. To
select this representative simulation, we choose the one for which the squared distances of
inflation and output gaps to their median values over the 100 replications is the smallest.28

Therefore, for each chain of shocks, we retain only one simulation. We do so for each of the
s = 100 series of shocks. This shrinks the computational burden by a factor n = 100 without
affecting the contribution of SL to the dynamics of output and inflation.

B.3 Adding information on priors
Because of the computational burden, we propose to include information about priors in
order to reduce computing times, in the same spirit as Ruge-Murcia (2012). Ruge-Murcia
(2012) proposes a mixed estimation approach characterized by a prior information that aims
to avoid the exploration of some parameter spaces that are economically irrelevant. We treat
priors as additional moments to match in the objective function. We denote by using P (θ)
the sum of the pdf stemming from the priors for θ. The resulting quasi-Bayesian SMM
estimator is then defined as:

θ̂SMM = arg min
θ

[
mT (xt)−ms,τ

(
x̂θt
)]′

W
[
mT (xt)−ms,τ

(
x̂θt
)]

+ ΞP (θ) , (97)

27For example, imposing n = 100 as in Arifovic et al. (2018) would necessitate computing 100*100*200=2e6
artificial values of output and inflation. For that parametrization, a rational expectations model only requires
100*200=2e4 values to compute the moments.

28Note that in a one-dimensional problem, this procedure boils down to selecting the median. However, as
we match a two-dimensional model (inflation and output gaps), our procedure provides a way to approximate
the median simulation.
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The first term of the expression is the same as in (96), the second term ΞP (θ) introduces
a penalty into the objective function when the matched values range differ from their prior
distributions. Here, Ξ is the relative weight of prior information with respect to the squared
distance of moments. For loglikelihood-based methods, Ξ = 1 when the number of ob-
servations is high. In contrast, here we only have 10 observations, which makes our prior
information dominate the objective function. We set the weight on priors to Ξ = 1/s = 0.01
in order to mimic the decreasing relative weight of priors when using full information meth-
ods.29

B.4 Optimization
We solve Eq. (96) using the CMAES optimization algorithm of Hansen et al. (2003). The
CMAES algorithm is a global optimization strategy that has the ability to deal with large-
scale optimization problems and avoid local minima. This algorithm provides an accurate
measure of the Hessian matrix, even in the presence of bound restrictions and priors for
control variables, as is the case in Eq. (96). Specifically, learning the covariance matrix in
the CMAES is analogous to learning the inverse Hessian matrix in a gradient-based, local
optimization method such as the quasi-Newton method.

29In the full information estimation case, the weight of prior is decreasing in the number of observations.
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C An alternative heterogeneous-expectations model
This section presents an alternative heterogeneous-expectation model and its calibration
based on a moment-matching method.

C.1 Heterogeneous expectations under adaptive learning
This model is a version of the heterogeneous-expectation NK model of Branch & McGough
(2010) and Hommes & Lustenhouwer (2019b). Aggregate expectations, denoted by a star-
superscript, are the weighted sum of two forecasting strategies, labeled simply by 1 and 2,
such that:

E∗t {ẑt+1} =
[
E∗t {ŷt+1}
E∗t {π̂t+1}

]
=
[
nyt a

y
1,t−1 + (1− nyt )ay2,t−1

nπt a
π
1,t−1 + (1− nπt )aπ2,t−1

]
, (98)

with nxt and 1 − nxt , x = {π, y}, the respective shares of agents using strategies 1 and 2 for
forecasting the inflation and output gaps. Under i.i.d disturbances, shocks are irrelevant for
forecasting t + 1 variables, and agents only use the intercept to form their forecasts. Thus,
in line with our implementation of the model under SL, the learning process corresponds
to ‘steady-state learning’ (Evans et al. 2008), and the two strategies, 1 and 2, to forecast
variable x = {y, π} are given by:[

ax1,t
ax2,t

]
=
[
ax1,t−1 + η1(ax1,t−1 − x̂t)
ax2,t−1 + η2(ax2,t−1 − x̂t)

]
, (99)

where the heterogeneity of forecasts stems from differences in the gain parameter associated
which each strategy, namely 0 ≤ ηx1 , η

x
2 < 1, with ηx1 6= ηx2 for each variable x. If ηπ1 = ηπ2 =

ηy1 = ηy2 , the model boils down to the standard adaptive learning model with homogeneous
expectations.

Based on Brock & Hommes (1997), the relative share of each strategy in the population
evolves according to a heuristic-switching model where the best performing strategy tends to
be adopted by a larger share of agents at the expense of the worst performing one. There are
two heuristic-switching models, one for each forecast π and y, in line with our implementation
of SL, where we use two separate tournaments for the two variables.30 Abstracting from the
time index for a moment, let the share of agents nx using strategy 1 to forecast variable x
be:

nx = exp(ωxRx
1)

exp(ωxRx
1) + exp(ωxRx

2) , (100)

30This way, the number of free parameters to be matched against the empirical moments will be conve-
niently the same under this model and the SL model.
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with Rx
1 and Rx

2 the fitness of the forecasting strategies 1 and 2 respectively, and ωx ≥ 0 the
so-called ‘intensity of choice’ related to the choice of a rule to forecast variable x. Let us
provide some intuition on the functioning of Eq. (100).

The share of strategy 1 in the forecasting rules of variable x, nx, is an increasing function
of Rx

1 (or a decreasing function of Rx
2): if strategy 1 has a higher fitness than strategy 2,

more agents will switch to use Strategy 1, and vice-versa if strategy 2 is the out-performer.
The right-hand-side of Eq. (100) is bounded between 0 and 1 such that nxz in line with
the interpretation of nx as a share of the agents. The higher the intensity of choice is,
the more likely agents are to switch to the best-performing strategy. In the limiting case
where the intensity of choice equals ωx = 0, each strategy is chosen with equal probability,
independently of its performance. In the opposite case where ωx =∞, the best-performing
strategy is always chosen by all agents in each period.

We now define F x = Rx
1 −Rx

2 as the difference between the fitness of strategies 2 and 1.
Following, e.g., Branch & Gasteiger (2019), and dropping the x-superscript for readability,
one can write:

n = exp(ωR1)
[exp(ωR1) + exp(ωR2)] = exp(ωF )

[exp(ωF ) + 1] , (101)

and likewise (102)

1− n = exp(−ωF )
[1 + exp(−ωF )] . (103)

Taking the difference between n and 1− n, we obtain:

n− (1− n) = 2n− 1 = exp(ωF )
[exp(ωF ) + 1] −

exp(−ωF )
[1 + exp(−ωF )] (104)

⇔ n = (1/2)× {tanh [(ω/2)× F ] + 1} . (105)

Applying Eq. (104) to our two-dimensional forecasting model and reintroducing the
time dimension, we obtain the laws of motion of the fractions of agents using strategy 1 for
forecasting variables y and π as:[

nyt
nπt

]
=
[

(1/2)× {tanh [(ωy/2)× F y
t−1] + 1}

(1/2)×
{

tanh
[
(ωπ/2)× F π

t−1

]
+ 1

} ] , (106)

and the fractions using strategy 2 are simply given by 1− nyt and 1− nπt .
What remains to be defined is a measure of a strategy’s fitness. As usual in the related

literature, and in line with the implementation under SL, we assume that a strategy fitness
is an increasing function of its relative forecast accuracy with respect to the other strategy.
Specifically, the fitness of strategy j = 1, 2 in forecasting variable x is given by the weighted
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sum of the squared past forecast errors available in time t:[
Ry
j,t

Rπ
j,t

]
=
[

(1− δy)Ry
j,t−1 − δy(yt−1 − ayj,t−1)2

(1− δπ)Rπ
j,t−1 − δπ(πt−1 − aπj,t−1)2

]
, (107)

where 1 > δx ≥ 0 is a memory coefficient which introduces history dependence in the
forecasting performance measures. If δx = 0, nxt is only a function of the relative forecast
error in period t − 1. In the opposite case, when δx → 1, nxt becomes the sum of all past
forecasting errors.

C.2 Moment matching with the alternative expectations model
We apply the same moment-matching method to determine the values of the learning

parameters as in Section 3 with the SL model. As for the SL model, a vector Θ =
[η1, η2, ω

y, ωπ, δy, δπ] gathers the six free parameters that define the law of motion of the
expectations. The same moments as in the SL model are employed to match the data.

The priors are set such that one of the forecasting strategies has a larger gain than the
other one. This asymmetry allows for the possibility of one rule coming to represent unstable
trend-chasing behavior, while the other (with a gain off less than one) captures stabilizing
mean-reverting behavior. Thus, the learning gain η1 has a prior set with an Inverse-Gamma
distribution of mean 0.01 and standard-deviation 0.02, while we set the prior of η2 using
a Weibull distribution of mean 1 and standard deviation 0.5. The difference between the
two gains tunes the heterogeneity of expectations and is essential for matching the moments
from the cross-section in the SPF forecasts.

The fitness-decay rates use a standard beta prior distributions bounded by values between
0 and 1. The intensity-of-choice prior means are set at 5, based on the estimates of the
heuristic-switching model on SPF data in Cornea-Madeira et al. (2019). The distributions
are assumed to be normal with a relatively large standard deviation of 10.

It is well-known in the learning literature that learning models exhibit unstable dynamics
as long as the ELB binds for too long (Evans et al. 2008). The present model is no exception:
with an ELB, this heterogeneous-expectation model diverges along deflationary spirals in
69% of the runs using the same calibrated parameters and the same chains of shocks that we
used to calibrate the SL model with an ELB in Section 3. To address this instability issue
under adaptive learning, one solution consists of complexifying the model, along the lines of
Ozden (2021). They consider a regime-switching implementation, on top of the heuristic-
switching model, where it is assumed that some of the agents have expectations that always
remain anchored at the target. In a different fashion, Evans et al. (2022) introduce an
exogenous lower bound on output to introduce a third stable steady state with deflation. This
lower bound is, however, ad-hoc. A third solution is to take a shortcut and implement the
model under shadow rates, namely assuming that the ELB is irrelevant, for instance because
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unconventional monetary policy can achieve economic outcomes comparable to negative
nominal rates. However, there is ample evidence that the ELB is relevant for business cycle
dynamics (Aruoba et al. 2022). The fourth option is to use a model such as our SL model
that does not suffer from this issue: it is simulated with a constrained monetary policy.

None of the solutions named above are perfect. Because our primary objective is to keep
the alternative model simple and free from ad-hoc mechanisms in order to compare it with
our SL results, we calibrate the heterogeneous-expectations model with adaptive learning
under shadow rates. Results of such a moment-matching procedure are reported in Tables
7 and 8.

Even under shadow-rate setting, the AL model fails to produce the crucial heterogeneity
in inflation expectations. Admittedly, the AL model without an ELB performs better overall
than the SL model with an ELB, but most of the gain comes from the closer match of
the autocorrelation of the real variables, which may not realistically be accounted for with
white-noise shocks only. As explained in Section 2, we instead see the proportions of the
autocorrelation in inflation and output gaps that are matched by a learning model as a proxy
for the share of persistence in the economy that may arise due to deviations from RE. It does
not seem plausible that all persistence, or even most of it, arises from such a source. The
optimized HAL model also failed to account for the small but positive correlation between
inflation and output.

In conclusion, despite relaxing the ELB constraint, which gives an obvious advantage
to the alternative model, our SL model i) achieves a similar fit of the data, ii) does a
better job of matching the heterogeneity of inflation forecasts, which is a crucial target for
CB communication, while iii) including the ELB constraint, iv) remaining simple and v)
without assuming any arbitrary bound on expectations or endogenous variables.
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Simulated Empirical [0.005;0.995]

σ(ŷt) output gap sd. 4.37 4.38 [3.97;4.83]
ρ(ŷt, ŷt−1) output gap autocorr. 0.68 0.98 [0.98;0.99]
σ(π̂t) inflation gap sd. 0.64 0.60 [0.54;0.66]
ρ(π̂t, π̂t−1) inflation gap autocorr. 0.92 0.90 [0.87;0.92]
ρ(π̂t, ŷt) inflation-output correlation -0.02 0.08 [-0.07;0.21]
∆Ey av. forecast dispersion of output gap 0.30 0.36 [0.31;0.41]
∆Eπ av. forecast dispersion of inflation gap 0.05 0.25 [0.22;0.28]
ρ(∆Ey

t ,∆Ey
t−1) autocorr. of forecast disp. of output gap 0.58 0.76 [0.70;0.82]

ρ(∆Eπ
t ,∆Eπ

t−1) autocorr. of forecast disp. of inflation gap 0.56 0.64 [0.55;0.72]
P [̂ıt > −r̄] probability not at the ELB 0.87 0.86 [0.81;0.91]

Objective function value 0.29 ×

Table 7: Comparison of the (matched) theoretical moments with their observable counter-
parts

Prior Distributions Posterior Results
Shape Mean STD Mean STD

σg - real shock std Invgamma .1 5 2.6552 0.4607
σu - cost-push shock std Invgamma .1 5 0.18946 0.0200

100πT - quarterly inflation trend Beta .62 .1 0.8 0.4607
κ - Phillips curve slope Beta .05 .1 0.013141 0.0041
η1 - gain for PLM 1 Invgamma .01 .02 0.0059005 0.0055
η2 - gain for PLM 2 Weibull 1 .5 0.80085 0.0737
ωy - intensity of choice for Ey Normal 5 10 0.66514 0.1859
ωπ - intensity of choice for Eπ Normal 5 10 17.139 2.2049
δy - fitness decay rate for Ey Beta .5 .2 0.074572 0.0143
δπ - fitness decay rate for Eπ Beta .5 .2 0.47755 0.1643

Notes: The values of the standard deviation of the optimized parameters are computed using a numerical approximation of a
sparse matrix representation of the Hessian matrix.

Table 8: Optimized parameters using the simulated method of moments matching the SPF
data (1968–2018)
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